Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakalte Atome an Nano-Membran gekoppelt

22.11.2011
Winzige mechanische Oszillatoren sind interessante Objekte, um die Grenze zwischen klassischer und Quantenphysik auszuloten. Forschern der Universität Basel ist es gelungen, eine nur 50 Nanometer dicke Membran und ultrakalte Atome aneinander zu koppeln. Ausserdem konnten sie die Eigenschaften der Membran untersuchen und zeigen, was ihre mechanische Güte begrenzt. Die Ergebnisse sind in den «Physical Review Letters» und «Applied Physics Letters» publiziert.

Licht kann Kräfte auf Materie ausüben: Zum Beispiel entsteht der Schweif eines Kometen unter anderem dadurch, dass das Sonnenlicht Teilchen aus dem Kometen herausreisst. Hierbei spricht man von Strahlungsdruck. Im Labor wird der Strahlungsdruck von Laserlicht dazu verwendet, um in einer Vakuumkammer Wolken von Atomen auf wenige millionstel Grad über dem absoluten Nullpunkt abzukühlen. Bei diesen Temperaturen gehorchen die Atome den Gesetzen der Quantenphysik. Derzeit arbeiten zahlreiche Forschergruppen weltweit daran, diese Laserkühlung auch auf makroskopische Objekte wie mechanische Oszillatoren anzuwenden, um sie ebenfalls im Quantenregime untersuchen zu können.


Foto einer Membran aus Siliziumnitrid, wie sie in den Experimenten der Basler Forscher verwendet wurde. Max Riedel/Andreas Jöckel, Universität Basel

Gefangen in der Lichtwelle

Einem Forschungsteam um den Physiker Prof. Dr. Philipp Treutlein vom Departement Physik der Universität Basel ist es nun gelungen, einen Membranoszillator mit Hilfe von Laserlicht an eine Wolke von ultrakalten Atomen zu koppeln. Der Membranoszillator besteht aus einer nur 50 Nanometer dünnen Folie aus Siliziumnitrid, die in einem Siliziumrahmen eingespannt ist und wie ein Trommelfell schwingen kann. Ein von der Membran reflektierter Laserstrahl erzeugt eine stehende Lichtwelle, in der die Atome durch Lichtkräfte gefangen werden. «Schwingt die Membran, so bewegt sich die stehende Lichtwelle, in der die Atome gefangen sind. Das führt zu einer Kopplung der Membranschwingung an die Bewegung der Atome», erklärt Maria Korppi, die als Doktorandin am Experiment arbeitet. Die Bewegung der Atome in der Lichtwelle führt wiederum zu einer Modulation des Strahlungsdrucks auf die Membran. «Diese Rückwirkung der Atome auf die Membran konnten wir in unserem Experiment erstmals beobachten», so Korppi.

Mit solchen gekoppelten Systemen aus ultrakalten Atomen und nanomechanischen Membranen möchte man in Zukunft die Grenzen der Quantenphysik ausloten und neue Anwendungen in der Quantentechnologie erschliessen. «Unser Experiment ist ein erster Schritt in diese Richtung, da wir erstmals einen mechanischen Oszillator mit Hilfe von ultrakalten Atomen manipulieren konnten», erläutert Philipp Treutlein. Die Experimente wurden gemeinsam mit Kollegen von der LMU München und dem Max-Planck-Institut für Quantenoptik durchgeführt.

Mechanischen Eigenschaften unter der Lupe

In einer zweiten Arbeit haben die Basler Forscher die mechanischen Eigenschaften der Nanomembran genauer unter die Lupe genommen. «Die Membran besitzt eine ungewöhnlich hohe mechanische Güte von über einer Million – das bedeutet, sie kann mehr als eine Million mal hin und her schwingen, bevor sie merklich gedämpft wird», so der Doktorand Andreas Jöckel. Zum Vergleich: Die Saiten eines Konzertflügels haben eine mechanische Güte von nur einigen Tausend. Eine hohe mechanische Güte ist aber sowohl Voraussetzung für die Verwendung der Membranen in Präzisionsmessungen als auch für die Beobachtung quantenmechanischer Effekte.

Was begrenzt die mechanische Güte der Membranoszillatoren? Zu dieser Frage, die Forscher in aller Welt schon seit einiger Zeit untersuchen, konnten die Basler Physiker nun einen wichtigen Teil der Antwort liefern. Sie konnten zeigen, dass in vielen Fällen die Kopplung der Membranschwingung an den Rahmen, in dem die Membran eingespannt ist, zu einer Begrenzung der mechanischen Güte führt. Was beim Klavier erwünscht ist, da erst durch die Kopplung der Saitenschwingung an das Gehäuse ein voller Klang entsteht, sollte man bei den Experimenten mit den Membranen der Nanophysik also unbedingt vermeiden.

Die Ergebnisse der Forscher wurden jetzt in den Fachzeitschriften «Physical Review Letters» und «Applied Physics Letters» publiziert. Die Arbeiten wurden vom Swiss Nanoscience Institute, dem NCCR Quantum Science and Technology, dem EU-Netzwerk AQUTE und der Nanosystems Initiative Munich unterstützt.

Originalbeiträge
Andreas Jöckel, Matthew T. Rakher, Maria Korppi, Stephan Camerer, David Hunger, Matthias Mader und Philipp Treutlein
Spectroscopy of mechanical dissipation in micro-mechanical membranes
Applied Physics Letters 99, 143109 (2011) | doi:10.1063/1.3646914
Stephan Camerer, Maria Korppi, Andreas Jöckel, David Hunger, Theodor W. Hänsch und Philipp Treutlein
Realization of an optomechanical interface between ultracold atoms and a membrane

Physical Review Letters 107, 223001 (2011) | doi:10.1103/PhysRevLett.107.223001

Weitere Auskünfte
Prof. Dr. Philipp Treutlein, Department Physik der Universität Basel, Tel. (0)61 267 37 66, E-Mail: philipp.treutlein@unibas.ch

Weitere Informationen:

http://apl.aip.org/resource/1/applab/v99/i14/p143109_s1
- Abstract 1
http://prl.aps.org/abstract/PRL/v107/i22/e223001
- Abstract 2
http://physics.aps.org/articles/v4/97
- Physics Viewpoint: Hybrid Atom-Optomechanics von Albert Schliesser und Tobias J. Kippenberg

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie

Analyse komplexer Biosysteme mittels High-Performance-Computing

13.12.2017 | Informationstechnologie