Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überraschendes Phänomen bei der Kristallbildung entdeckt

12.02.2016

Kügelchen von leicht unterschiedlicher Größe kristallisieren schneller – Modellexperimente mit kolloiden Kristallen helfen Computersimulationen

Winzig kleine, in Wasser verteilte Plastikkügelchen ordnen sich schneller in einer Kristallstruktur an, wenn sie von leicht unterschiedlicher Größe sind, als gleich große Kugeln. Dieses überraschende Phänomen haben Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) bei der Untersuchung von Kolloiden entdeckt.


Drei 1-2 Millimeter große Kristallite während des Wachstums: Unter dem Polarisationsmikroskop offenbart sich die ganze Schönheit dieser Objekte, während die weniger gut geordnete Schmelze dunkel bleibt. Je nach Orientierung der Kriställchen schimmern sie in anderen phantastischen Farben. Bei näherem Hinsehen sind auch die feinen Unterschiede im Kristallbau und die leicht fransige Oberfläche zu erkennen - beides typisch für eine geringe Oberflächenspannung.

Foto/©: KOMET336, Institut für Physik, JGU


Typische kolloidale Suspensionen unterschiedlicher Konzentration: Die Proben bestehen aus 68±3 Nanometer großen, negativ geladenen Kügelchen aus Polystyrol. Die Konzentration nimmt von links nach rechts zu. Aus der fast klaren Flüssigkeit wird zunächst eine rosa schimmernde, milchige Flüssigkeit und dann ein Festkörper mit vielen kleinen Kristallen. Die rote Färbung zeigt, dass der mittlere Abstand zwischen zwei Kügelchen etwa so groß ist wie eine Wellenlänge roten Lichts (610 Nanometer).

Foto/©: KOMET336, Institut für Physik, JGU

Kolloide sind Teilchen von weniger als einem tausendstel Millimeter Größe, die als Schwebstoffe fein verteilt in einem Trägermedium schwimmen. Ein klassisches Beispiel ist die Milch mit ihren kleinen Fetttröpfchen, die im Wasser schweben. Physiker nutzen solche kolloidalen Suspensionen für Modellexperimente, unter anderem zur Überprüfung von Computersimulationen.

Die Arbeitsgruppe von Univ.-Prof. Dr. Thomas Palberg am Institut für Physik beobachtet die Kristallbildung von solchen in Wasser schwebenden Plastikkügelchen mit Videomikroskopie oder anderen optischen Methoden.

Ein besonders beliebtes Modellsystem sind elektrostatisch negativ geladene Kugeln in salzarmem oder destilliertem Wasser. Bereits mit bloßem Auge lässt sich erkennen, wie die Probe bei zunehmender Konzentration der Kügelchen zunächst stark milchig wird und schließlich kleine Kristalle bildet, die in allen Regenbogenfarben schillern. Unter dem Mikroskop ist zu sehen, dass sich die Schwebeteilchen zu einer regelmäßigen Gitterstruktur angeordnet haben wie bei einem Schmuckopal.

Bei dem jetzigen Versuch haben die Physiker Suspensionen mit Kügelchen verschiedener Größe und Größenverteilung untersucht. Erstaunlicherweise konnten sie feststellen, dass die Kristallbildung durch leichte Größenunterschiede der Kugeln kontinuierlich beschleunigt wurde – und zwar bis zu einem Größenunterschied von acht Prozent.

Größere Abweichungen werden nicht toleriert, stattdessen geht die Geschwindigkeit der Kristallisation dann drastisch zurück, weil mehr Zeit für die Sortierung der Kugeln in Kristalle aus vorwiegend großen oder vorwiegend kleinen Kugeln nötig wird. „Wir waren über diesen Effekt sehr überrascht, weil wir intuitiv erwartet hätten, dass gleich große Kugeln schneller kristallisieren“, sagt Thomas Palberg zu dem Ergebnis. „Aber offenbar lassen sich ungleich große Kugeln schneller in ein Gitter packen, auch wenn es am Ende vielleicht nicht so schön aussieht.“

Oberflächenspannung zwischen Kristall und Schmelze entscheidend

Der physikalische Grund für die unerwartet schnelle Kristallisation ist eine geringere Oberflächenspannung zwischen dem Kristall und seiner umgebenden Schmelze. „Wir können zeigen, dass die Oberflächenspannung eng gekoppelt ist an die Differenz zwischen dem Ausmaß der Unordnung in der Schmelze und dem Ausmaß der Unordnung im festen Zustand“, ergänzt der Physiker.

„Natürlich ist eine Schmelze viel ungeordneter als ein Kristall. Aber gerade deswegen ist die perfekte Ordnung des Kristalls leicht durch ein paar Kügelchen abweichender Größe zu stören, während man in der Schmelze die Zunahme der Unordnung kaum bemerken würde. Der Unterschied der Unordnung und damit die Oberflächenspannung nehmen also ab, wenn leicht unterschiedliche Kugeln verwendet werden. In der Folge wird dann die Kristallbildung wesentlich einfacher und schneller.“ Dies könnte auch erklären, weshalb im Computer simulierte, gleichmäßig große Kugeln viel zu langsam kristallisieren.

Veröffentlichung:
Thomas Palberg, Patrick Wette, Dieter M. Herlach
Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres
Physical Review E, 3. Februar 2016
DOI: 10.1103/PhysRevE.93.022601


Weitere Informationen:
Univ.-Prof. Dr. Thomas Palberg
Physik der Kondensierten Materie (KOMET)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23638
Fax: +49 6131-39-23807
E-Mail: palberg@uni-mainz.de
http://kolloid.physik.uni-mainz.de/people01.php

Weitere Links:
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.022601 (Abstract)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics