Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überraschendes Phänomen bei der Kristallbildung entdeckt

12.02.2016

Kügelchen von leicht unterschiedlicher Größe kristallisieren schneller – Modellexperimente mit kolloiden Kristallen helfen Computersimulationen

Winzig kleine, in Wasser verteilte Plastikkügelchen ordnen sich schneller in einer Kristallstruktur an, wenn sie von leicht unterschiedlicher Größe sind, als gleich große Kugeln. Dieses überraschende Phänomen haben Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) bei der Untersuchung von Kolloiden entdeckt.


Drei 1-2 Millimeter große Kristallite während des Wachstums: Unter dem Polarisationsmikroskop offenbart sich die ganze Schönheit dieser Objekte, während die weniger gut geordnete Schmelze dunkel bleibt. Je nach Orientierung der Kriställchen schimmern sie in anderen phantastischen Farben. Bei näherem Hinsehen sind auch die feinen Unterschiede im Kristallbau und die leicht fransige Oberfläche zu erkennen - beides typisch für eine geringe Oberflächenspannung.

Foto/©: KOMET336, Institut für Physik, JGU


Typische kolloidale Suspensionen unterschiedlicher Konzentration: Die Proben bestehen aus 68±3 Nanometer großen, negativ geladenen Kügelchen aus Polystyrol. Die Konzentration nimmt von links nach rechts zu. Aus der fast klaren Flüssigkeit wird zunächst eine rosa schimmernde, milchige Flüssigkeit und dann ein Festkörper mit vielen kleinen Kristallen. Die rote Färbung zeigt, dass der mittlere Abstand zwischen zwei Kügelchen etwa so groß ist wie eine Wellenlänge roten Lichts (610 Nanometer).

Foto/©: KOMET336, Institut für Physik, JGU

Kolloide sind Teilchen von weniger als einem tausendstel Millimeter Größe, die als Schwebstoffe fein verteilt in einem Trägermedium schwimmen. Ein klassisches Beispiel ist die Milch mit ihren kleinen Fetttröpfchen, die im Wasser schweben. Physiker nutzen solche kolloidalen Suspensionen für Modellexperimente, unter anderem zur Überprüfung von Computersimulationen.

Die Arbeitsgruppe von Univ.-Prof. Dr. Thomas Palberg am Institut für Physik beobachtet die Kristallbildung von solchen in Wasser schwebenden Plastikkügelchen mit Videomikroskopie oder anderen optischen Methoden.

Ein besonders beliebtes Modellsystem sind elektrostatisch negativ geladene Kugeln in salzarmem oder destilliertem Wasser. Bereits mit bloßem Auge lässt sich erkennen, wie die Probe bei zunehmender Konzentration der Kügelchen zunächst stark milchig wird und schließlich kleine Kristalle bildet, die in allen Regenbogenfarben schillern. Unter dem Mikroskop ist zu sehen, dass sich die Schwebeteilchen zu einer regelmäßigen Gitterstruktur angeordnet haben wie bei einem Schmuckopal.

Bei dem jetzigen Versuch haben die Physiker Suspensionen mit Kügelchen verschiedener Größe und Größenverteilung untersucht. Erstaunlicherweise konnten sie feststellen, dass die Kristallbildung durch leichte Größenunterschiede der Kugeln kontinuierlich beschleunigt wurde – und zwar bis zu einem Größenunterschied von acht Prozent.

Größere Abweichungen werden nicht toleriert, stattdessen geht die Geschwindigkeit der Kristallisation dann drastisch zurück, weil mehr Zeit für die Sortierung der Kugeln in Kristalle aus vorwiegend großen oder vorwiegend kleinen Kugeln nötig wird. „Wir waren über diesen Effekt sehr überrascht, weil wir intuitiv erwartet hätten, dass gleich große Kugeln schneller kristallisieren“, sagt Thomas Palberg zu dem Ergebnis. „Aber offenbar lassen sich ungleich große Kugeln schneller in ein Gitter packen, auch wenn es am Ende vielleicht nicht so schön aussieht.“

Oberflächenspannung zwischen Kristall und Schmelze entscheidend

Der physikalische Grund für die unerwartet schnelle Kristallisation ist eine geringere Oberflächenspannung zwischen dem Kristall und seiner umgebenden Schmelze. „Wir können zeigen, dass die Oberflächenspannung eng gekoppelt ist an die Differenz zwischen dem Ausmaß der Unordnung in der Schmelze und dem Ausmaß der Unordnung im festen Zustand“, ergänzt der Physiker.

„Natürlich ist eine Schmelze viel ungeordneter als ein Kristall. Aber gerade deswegen ist die perfekte Ordnung des Kristalls leicht durch ein paar Kügelchen abweichender Größe zu stören, während man in der Schmelze die Zunahme der Unordnung kaum bemerken würde. Der Unterschied der Unordnung und damit die Oberflächenspannung nehmen also ab, wenn leicht unterschiedliche Kugeln verwendet werden. In der Folge wird dann die Kristallbildung wesentlich einfacher und schneller.“ Dies könnte auch erklären, weshalb im Computer simulierte, gleichmäßig große Kugeln viel zu langsam kristallisieren.

Veröffentlichung:
Thomas Palberg, Patrick Wette, Dieter M. Herlach
Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres
Physical Review E, 3. Februar 2016
DOI: 10.1103/PhysRevE.93.022601


Weitere Informationen:
Univ.-Prof. Dr. Thomas Palberg
Physik der Kondensierten Materie (KOMET)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23638
Fax: +49 6131-39-23807
E-Mail: palberg@uni-mainz.de
http://kolloid.physik.uni-mainz.de/people01.php

Weitere Links:
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.022601 (Abstract)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Max-Planck-Princeton-Partnerschaft in der Fusionsforschung bestätigt
23.11.2017 | Max-Planck-Institut für Plasmaphysik

nachricht Magnetfeld-Sensor Argus „sieht“ Kräfte im Bauteil
23.11.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung