Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überraschendes Phänomen bei der Kristallbildung entdeckt

12.02.2016

Kügelchen von leicht unterschiedlicher Größe kristallisieren schneller – Modellexperimente mit kolloiden Kristallen helfen Computersimulationen

Winzig kleine, in Wasser verteilte Plastikkügelchen ordnen sich schneller in einer Kristallstruktur an, wenn sie von leicht unterschiedlicher Größe sind, als gleich große Kugeln. Dieses überraschende Phänomen haben Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) bei der Untersuchung von Kolloiden entdeckt.


Drei 1-2 Millimeter große Kristallite während des Wachstums: Unter dem Polarisationsmikroskop offenbart sich die ganze Schönheit dieser Objekte, während die weniger gut geordnete Schmelze dunkel bleibt. Je nach Orientierung der Kriställchen schimmern sie in anderen phantastischen Farben. Bei näherem Hinsehen sind auch die feinen Unterschiede im Kristallbau und die leicht fransige Oberfläche zu erkennen - beides typisch für eine geringe Oberflächenspannung.

Foto/©: KOMET336, Institut für Physik, JGU


Typische kolloidale Suspensionen unterschiedlicher Konzentration: Die Proben bestehen aus 68±3 Nanometer großen, negativ geladenen Kügelchen aus Polystyrol. Die Konzentration nimmt von links nach rechts zu. Aus der fast klaren Flüssigkeit wird zunächst eine rosa schimmernde, milchige Flüssigkeit und dann ein Festkörper mit vielen kleinen Kristallen. Die rote Färbung zeigt, dass der mittlere Abstand zwischen zwei Kügelchen etwa so groß ist wie eine Wellenlänge roten Lichts (610 Nanometer).

Foto/©: KOMET336, Institut für Physik, JGU

Kolloide sind Teilchen von weniger als einem tausendstel Millimeter Größe, die als Schwebstoffe fein verteilt in einem Trägermedium schwimmen. Ein klassisches Beispiel ist die Milch mit ihren kleinen Fetttröpfchen, die im Wasser schweben. Physiker nutzen solche kolloidalen Suspensionen für Modellexperimente, unter anderem zur Überprüfung von Computersimulationen.

Die Arbeitsgruppe von Univ.-Prof. Dr. Thomas Palberg am Institut für Physik beobachtet die Kristallbildung von solchen in Wasser schwebenden Plastikkügelchen mit Videomikroskopie oder anderen optischen Methoden.

Ein besonders beliebtes Modellsystem sind elektrostatisch negativ geladene Kugeln in salzarmem oder destilliertem Wasser. Bereits mit bloßem Auge lässt sich erkennen, wie die Probe bei zunehmender Konzentration der Kügelchen zunächst stark milchig wird und schließlich kleine Kristalle bildet, die in allen Regenbogenfarben schillern. Unter dem Mikroskop ist zu sehen, dass sich die Schwebeteilchen zu einer regelmäßigen Gitterstruktur angeordnet haben wie bei einem Schmuckopal.

Bei dem jetzigen Versuch haben die Physiker Suspensionen mit Kügelchen verschiedener Größe und Größenverteilung untersucht. Erstaunlicherweise konnten sie feststellen, dass die Kristallbildung durch leichte Größenunterschiede der Kugeln kontinuierlich beschleunigt wurde – und zwar bis zu einem Größenunterschied von acht Prozent.

Größere Abweichungen werden nicht toleriert, stattdessen geht die Geschwindigkeit der Kristallisation dann drastisch zurück, weil mehr Zeit für die Sortierung der Kugeln in Kristalle aus vorwiegend großen oder vorwiegend kleinen Kugeln nötig wird. „Wir waren über diesen Effekt sehr überrascht, weil wir intuitiv erwartet hätten, dass gleich große Kugeln schneller kristallisieren“, sagt Thomas Palberg zu dem Ergebnis. „Aber offenbar lassen sich ungleich große Kugeln schneller in ein Gitter packen, auch wenn es am Ende vielleicht nicht so schön aussieht.“

Oberflächenspannung zwischen Kristall und Schmelze entscheidend

Der physikalische Grund für die unerwartet schnelle Kristallisation ist eine geringere Oberflächenspannung zwischen dem Kristall und seiner umgebenden Schmelze. „Wir können zeigen, dass die Oberflächenspannung eng gekoppelt ist an die Differenz zwischen dem Ausmaß der Unordnung in der Schmelze und dem Ausmaß der Unordnung im festen Zustand“, ergänzt der Physiker.

„Natürlich ist eine Schmelze viel ungeordneter als ein Kristall. Aber gerade deswegen ist die perfekte Ordnung des Kristalls leicht durch ein paar Kügelchen abweichender Größe zu stören, während man in der Schmelze die Zunahme der Unordnung kaum bemerken würde. Der Unterschied der Unordnung und damit die Oberflächenspannung nehmen also ab, wenn leicht unterschiedliche Kugeln verwendet werden. In der Folge wird dann die Kristallbildung wesentlich einfacher und schneller.“ Dies könnte auch erklären, weshalb im Computer simulierte, gleichmäßig große Kugeln viel zu langsam kristallisieren.

Veröffentlichung:
Thomas Palberg, Patrick Wette, Dieter M. Herlach
Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres
Physical Review E, 3. Februar 2016
DOI: 10.1103/PhysRevE.93.022601


Weitere Informationen:
Univ.-Prof. Dr. Thomas Palberg
Physik der Kondensierten Materie (KOMET)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23638
Fax: +49 6131-39-23807
E-Mail: palberg@uni-mainz.de
http://kolloid.physik.uni-mainz.de/people01.php

Weitere Links:
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.022601 (Abstract)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise