Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TUM Wissenschaftler forschen am Nachfolger für das Space Shuttle

14.11.2008
IGSSE Team arbeitet in Kooperation mit der Stanford University und der NASA am Hitzeschild zukünftiger Raumfahrzeuge - Grundlagenforschung auf dem Gebiet der Wiedereintritts-Areodynamik.

Heute Nacht ist der Start des Space Shuttle Endeavor vom Kennedy Space Center geplant. Das Shuttle soll ein Logistikmodul zur Internationalen Raumstation transportieren. Doch seit Präsident Bush 2004 das neue Raumfahrtprogramm der USA angekündigt hat, ist klar, dass das Shuttle ein Auslaufmodell ist, und dass ab 2010 ein Nachfolger ins All starten muss.

Daher wird mit Nachdruck an einer Alternative geforscht, und das nicht nur bei der NASA. Ein Team der International Graduate School of Science and Engineering (IGSSE) der TU München, das in Kooperation mit der Stanford University der NASA zur Hand geht, beteiligt sich an der Forschungsarbeit. Im Projekt, welches Dr. Christian Stemmer vom Lehrstuhl für Aerodynamik leitet, werden die physikalischen Rahmenbedingungen für ein neues Hitzeschutzschild für das Raumfahrzeug der nächsten Generation geschaffen.

Das Gewicht ist eine der Variablen, die bei der Entwicklung eines Raumfahrzeuges berücksichtigt werden müssen. Es spielt eine große Rolle, denn jedes überschüssige Gramm muss in den Weltraum transportiert werden. Steigt das Gewicht, vervielfacht sich auch der Treibstoffbedarf. Doch stößt man hier an eine physikalische Grenze. Denn auch der Treibstoff hat ein Eigengewicht, das es zu transportieren gilt. Um genug Personen und Versorgungsgüter mitnehmen zu können, kommt es demnach auf jedes Gramm an, das eingespart werden kann. Ist ein Raumfahrzeug zu schwer, bekommt man plötzlich nur noch zwei, statt der eigentlich gewollten vier Astronauten unter.

Beim Hitzeschild, das das Raumfahrzeug ummantelt, sehen die Forscher eine Möglichkeit an Gewicht zu sparen. Die Aufgabe eines solchen Schildes ist, das Raumfahrzeug beim Wiedereintritt in die Erdatmosphäre vor den dabei entstehenden hohen Temperaturen zu schützen. Hier werden extreme Geschwindigkeiten über 30 000 km/h erreicht. Diese Energie kann nur durch Reibung des Raumfahrzeugs an der Lufthülle abgebaut werden. Es muss 2000 mal so viel abgebaut werden, wie bei der Vollbremsung eines ICEs von Höchst-geschwindigkeit. Dabei werden an den Vorderseiten Lufttemperaturen um das Raumfahrzeug von mehreren Tausend Grad erreicht. Die Oberfläche, also das Hitzeschutzschild, heizt sich mit der Zeit auf Temperaturen bis zu 2000 Grad auf, ohne dass die tragende Struktur darunter in Mitleidenschaft gezogen werden darf. Ein Loch im Hitzeschutzschild hatte 2003 zum Absturz des Space Shuttles 'Columbia' geführt.

Viele Projekte in der Raumfahrt starteten in den 60er und 70er Jahren und wurden durch den Kalten Krieg schnell vorangetrieben. "Damals hatte man, aufgrund des Wettlaufs zum Mond zwischen USA und Russland, weder die Zeit alles vorher genau zu testen, noch die Berechnungsmöglichkeiten, die wir heute haben. Das Ziel, vor den Russen auf dem Mond zu sein war wichtiger als ein Sicherheitsniveau, wie es heute gewährleistet werden kann," erklärt Stemmer. Seit 2001 forscht er an dem Thema, das seit Bewilligung International Graduate School of Science and Engineering (IGSSE) in der Exzellenzinitiative zusätzlich gefördert wird. Ziel der Graduiertenschule ist es unter anderen auch, Wissenschaftler unterschiedlicher Disziplinen zusammenzubringen und eine Plattform für interdisziplinäre Forschung zu schaffen.

So ist das auch in der Arbeitsgruppe von Herrn Stemmer. "Neben der Aerodynamik, spielt auch die Chemie eine ganz entscheidende Rolle," so Stemmer, "denn die aufgeheizten Moleküle reagieren miteinander und verbrauchen dadurch zusätzliche Energie. Auf diesem Weg können wir die Temperaturen genauer simulieren und das Hitzeschild damit verbessern." Eine ganz entscheidende Rolle spielen bei der Optimierung auch Hindernisse auf der Oberfläche, denn jedes führt dazu, dass sich die Luft aufstaut und aufheizt, das können überstehende Befestigungselemente oder aufstehende Dichtungen sein. Experimente sind bei solchen Geschwindigkeiten kaum möglich, da hilft nur der Rechner. Bei früheren Missionen hat man festgestellt, dass an Befestigungselementen das Hitzeschild nach dem Wiedereintritt stark abgebrannt war, an anderen Stellen aber kaum in Mitleidenschaft gezogen wurde. "Jetzt wissen wir auch warum, und können in Zukunft an manchen Stellen die Dicke des Schildes erhöhen und an manchen verringern - je nach Bedarf," sagt Stemmer.

Das Team um Stemmer betreibt auf dem Gebiet Grundlagenforschung, die nicht nur in Hinblick auf den Widereintritt in die Erdatmosphäre nutzbringend ist. Denn ist die Zusammensetzung der Atmosphäre eines beliebigen Planeten bekannt, kann mit den Ergebnissen der atmosphärische Eintritt für diesen simuliert und berechnet werden. Der Grund dafür ist, dass die physikalischen Gesetze überall gleich sind, nur die Molekülzusammensetzung und die Dichte unterscheiden sich von den Bedingungen auf der Erde. Schon seit längerer Zeit sind bemannte Missionen zum Mars geplant. Hier müssen ebenfalls neue Raumfahrzeuge entwickelt werden, die genau auf die Bedürfnisse der Mission abgestimmt sind. Die Entwickler profitieren von der Forschung der TUM, denn auch hier gilt die goldene Regel: je weniger Masse, desto besser.

Die International Graduate School of Science and Engineering (IGSSE) ist eine Einrichtung der Technischen Universität München (TUM). Gegründet wurde sie im Rahmen der Exzellenz-initiative des Bundes und der Ländern im Jahr 2006. Ziel der Graduate School ist die Förderung von interdisziplinärer Spitzenforschung im Bereich der Natur- und Ingenieurwissenschaften sowie der Medizin. Neben der Finanzierung von Nachwuchsgruppen setzt die IGSSE auf die individuelle Förderung von Doktorandinnen und Doktoranden. Inzwischen haben 30 interdisziplinäre Projektteams mit insgesamt 132 Doktoranden (davon 50 Stipendiaten), 27 Projekt Team Leader und 60 Principal Investigator ihre Arbeit unter dem Dach der IGSSE aufgenommen.

Kontakt:
Dr.-Ing. Christian Stemmer
Telefon: +49-89-289-16142
eMail: christian.stemmer@aer.mw.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.aer.mw.tum.de/staff/christian.stemmer/index.de.php

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften