Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Trampolin aus Licht

06.12.2012
Forscher aus Münster demonstrieren erstmals optische Barriere für absorbierende Tröpfchen / "Nature" präsentiert Forschungsarbeit in der Rubrik "News&Views"

Kleinste Flüssigkeitstropfen nur mit Licht zu lenken – diese Vision, die einem Science-Fiction-Film entnommen zu sein scheint, rückt durch das Forschungsgebiet der optischen Mikro-Manipulation in den Bereich der Wirklichkeit.


Versuchsaufbau zum Nachweis des Trampolins aus Licht – innerhalb der Glasküvette wurde die Laserlichtbarriere durch streuende Partikel sichtbar gemacht.

Foto: WWU/AG Nichtlineare Photonik

Wissenschaftlern des Instituts für Angewandte Physik der Westfälischen Wilhelms-Universität Münster (WWU) ist es nun erstmals gelungen, absorbierende – also Lichtenergie aufnehmende – Mikro-Tröpfchen in Luft, sogenannte Aerosole, optisch zu manipulieren.

Das renommierte Fachjournal "Nature" präsentiert in seiner aktuellen Ausgabe Auszüge der Forschungsarbeit in der Rubrik "News&Views", in der herausragende Veröffentlichungen aus anderen Fachmagazinen vorgestellt werden. Auch "Nature Photonics" würdigte die Erkenntnis der Münsteraner bereits als einen Höhepunkt der aktuellen Forschungen in diesem Bereich.

Das Wissenschaftlerteam aus den Doktoranden Michael Eßeling, Patrick Rose und Christina Alpmann sowie der Arbeitsgruppenleiterin Prof. Dr. Cornelia Denz nutzt den Effekt der Fotophorese. Dabei heizt ein Laserstrahl eine Seite des Mikro-Tröpfchens stark auf. Diese Wärme wird an die Umgebungsluft abgegeben. "Die erwärmte Luft dehnt sich aus und übt so eine Kraft aus, die das Tröpfchen aus dem Laserstrahl schiebt", erklärt Michael Eßeling. In einer ersten Veröffentlichung hatte das Team bereits zeigen können, dass man mittels geeigneter Strahlformung einen dreidimensionalen "Käfig aus Licht" präparieren kann, mit dem sich absorbierende Partikel rein optisch fangen und in alle Richtungen steuern lassen.

Nun zeigten die Forscher in einem zweiten Experiment, dass sich der Effekt auch auf flüssige Aerosole übertragen lässt. Aerosole entstehen immer dann, wenn Flüssigkeiten mit einer Düse fein verteilt werden, etwa bei Spraydosen oder Tintenstrahldruckern. Dazu nutzen die Wissenschaftler einzelne Tröpfchen aus einer speziell präparierten Tintenpatrone, die auf eine Barriere aus stark fokussiertem Laserlicht fallen. Die Mikrotröpfchen werden von dieser Barriere zurückgeworfen wie von einem Trampolin. "Diese Beobachtung stellt eine wichtige Arbeit im Forschungsfeld der optischen Manipulation absorbierender Tröpfchen dar", betont Michael Eßeling. Die Tröpfchen könnten in Zukunft beispielsweise in einer Lichtfalle eingesperrt werden, um Mischvorgänge zu beobachten oder die Analyse der Tröpfchenbestandteile zu ermöglichen.

Originalpublikation:

Esseling M., Rose P., Alpmann C., and Denz C. (2012): Photophoretic trampoline—Interaction of single airborne absorbing droplets with light. Applied Physics Letters 101, 131115; doi: 10.1063/1.4755761

Artikel in "Nature"/"News and Views":

McGloin D. (2012): Applied physics: An optical trampoline. Nature 492, 51–52; doi:10.1038/492051a

Dr. Christina Heimken | idw
Weitere Informationen:
http://www.uni-muenster.de/Physik.AP/Denz/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Mathematik macht Moleküldynamik sichtbar
28.04.2016 | Deutsches Elektronen-Synchrotron DESY

nachricht Dauerbetrieb der Tokamaks rückt näher
27.04.2016 | Max-Planck-Institut für Plasmaphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Winzige Mikroroboter, die Wasser reinigen können

Forscher des Max-Planck-Institutes Stuttgart haben winzige „Mikroroboter“ mit Eigenantrieb entwickelt, die Blei aus kontaminiertem Wasser entfernen oder organische Verschmutzungen abbauen können.

In Zusammenarbeit mit Kollegen in Barcelona und Singapur verwendete die Gruppe von Samuel Sánchez Graphenoxid zur Herstellung ihrer Motoren im Mikromaßstab. D

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: Bewegungen in der lebenden Zelle beobachten

Prinzipien der statistischen Thermodynamik: Forscher entwickeln neue Untersuchungsmethode

Ein Forscherteam aus Deutschland, den Niederlanden und den USA hat eine neue Methode entwickelt, mit der sich Bewegungsprozesse in lebenden Zellen nach ihrem...

Im Focus: Faszinierender Blick in den Zellkern

Veröffentlichungen in Nature Communications zur DNA-Replikation

Vor jeder Zellteilung muss die Erbsubstanz kopiert werden. Die Startpunkte der DNA-Verdoppelung in Zellen von Menschen und Mäusen haben Wissenschaftler um...

Im Focus: Dauerbetrieb der Tokamaks rückt näher

Aussichtsreiche Experimente in ASDEX Upgrade / Bedingungen für ITER und DEMO nahezu erfüllt

Die ihrer Natur nach in Pulsen arbeitenden Fusionsanlagen vom Typ Tokamak sind auf dem Weg zum Dauerbetrieb. Alexander Bock, Wissenschaftler im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

VDE|DGBMT veranstaltet Tagung zur patientennahen mobilen Diagnostik POCT

28.04.2016 | Veranstaltungen

Norddeutsche Herztage: 300 Experten treffen sich in Kiel

28.04.2016 | Veranstaltungen

Landwirtschaft und Lebensmittel - Analytische Chemiker: Wächter über Umwelt und Gesundheit

28.04.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

SmartF-IT passt Produktionsprozesse flexibel an

29.04.2016 | Informationstechnologie

Neue Entdeckung im Kampf gegen Krebs: Tumorzellen stellen Betrieb um

29.04.2016 | Biowissenschaften Chemie

Fettreiche Ernährung lässt Gehirn hungern

29.04.2016 | Biowissenschaften Chemie