Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tempolimit auf dem Quanten-Highway

26.01.2012
Physiker am Max-Planck-Institut für Quantenoptik messen die Ausbreitungsgeschwindigkeit von Quantensignalen in einem Vielteilchensystem.

Quantencomputer, in denen Quantenteilchen die Aufgaben der klassischen Bits übernehmen, können im Prinzip eine vielfach höhere Rechenleistung erzielen als herkömmliche Rechner. Aber wie effizient und wie schnell können Quantencomputer wirklich werden? Wo werden ihre Grenzen liegen? Dies hängt kritisch davon ab, mit welcher Geschwindigkeit ein Quantensignal innerhalb eines Quantenprozessorsübertragen werden kann.


Ausbreitung von Quantenkorrelationen in einem optischen Gitter. Links: künstlerische Darstellung (Grafik: woogie works animation studio).


a) Im Anfangszustand ist jeder Gitterplatz mit genau einem Atom besetzt. Dann wird die Barriere abrupt erniedrigt, und das System gerät aus dem Gleichgewicht. b) Nach dem Herunterfahren der Barriere entsteht ein Paar aus einem Doublon und einem Holon, die sich in entgegen gesetzte Richtungen ausbreiten.(Grafik: MPQ)

Die Ausbreitung solcher Quantensignale haben nun Physiker aus der Abteilung Quanten-Vielteilchensysteme am Max-Planck-Institut für Quantenoptik (Garching bei München) in einem festkörperähnlichen System erstmals direkt beobachtet (Nature, DOI:10.1038/ nature10748), in enger Zusammenarbeit mit theoretischen Physikern der Universität Genf. In einem streng geordneten Gitter aus einzelnen Rubidiumatomen erzeugten sie eine Quantenstörung – ein „verschränktes“ Paar aus einem doppelt besetzten und einem leeren Gitterplatz.

Mit Hilfe mikroskopischer Verfahren verfolgten sie, wie dieses Signal von Gitterplatz zu Gitterplatz wandert. „Diese Messung gibt uns erstmals Auskunft darüber, wie ein ganz elementarer Prozess bei der Ausbreitung von Quantensignalen abläuft“, erklärt Prof. Immanuel Bloch, der Leiter der Abteilung Quanten-Vielteilchensysteme.

Die Übermittlung und Verarbeitung von Information in Quantencomputern beruht auf fundamental anderen Konzepten als in klassischen Computern. Das liegt an den gravierenden Unterschieden zwischen Quantenteilchen und klassischen Objekten. Während letztere z.B. entweder schwarz oder weiß sind, können Quantenteilchen beide Farben gleichzeitig haben. Erst beim Messvorgang entscheiden sie sich für eine der beiden möglichen Eigenschaften. Aufgrund dieser Besonderheit können zwei Quantenobjekte einen gemeinsamen „verschränkten“ Zustand bilden, in dem ihre Eigenschaften fest verknüpft, d.h. quantenkorreliert sind. Dafür, wie schnell sich eine solche Quantenkorrelation nach ihrer Erzeugung in einem Medium ausbreitet, gibt es derzeit keine allgemeinen Vorhersagen.

Die Physiker in der Abteilung Quanten-Vielteilchensysteme haben nun einen solchen Prozess direkt beobachtet. Dabei experimentieren sie mit einem extrem kalten Gas aus Rubidiumatomen. Mit Lichtfeldern strukturieren sie das Ensemble derart, dass sich die Atome nur noch entlang eindimensionaler, parallel verlaufender Röhren bewegen dürfen. Diesen Röhren wird schließlich eine stehende Laserwelle überlagert, so dass sich die Atome in einer periodischen Folge heller und dunkler Gebiete befinden. Hier ordnen sich die Teilchen zu einer regelmäßigen Gitterstruktur an: in jedem hellen Gebiet sitzt genau ein Atom wie in einer Mulde, die von der nächsten Mulde durch eine Barriere getrennt ist.

Über die Laserintensität lässt sich die Höhe der Barriere zwischen den Mulden steuern. Am Anfang ist diese so hoch, dass die Atome auf ihren Plätzen fixiert sind und nicht zum Nachbarplatz wandern können. Dann wird quasi „auf Knopfdruck“ die Barriere so weit erniedrigt, dass das System aus dem Gleichgewicht gerät und lokale Störungen entstehen. Denn unter den neuen Bedingungen darf das eine oder andere Atom die Barriere „durchtunneln“ und auf seinen Nachbarplatz gelangen. Auf diese Weise entstehen vereinzelt verschränkte Paare aus je einem doppelt besetzten Gitterplatz (Doublon genannt) und einem leeren Gitterplatz, einem Loch oder auch „Holon“ (von dem englischen Wort „hole“ abgeleitet). Nach einem von einem Team um Prof. Corinna Kollath (Universität Genf) entwickelten Modell wandern Doublon und Holon wie echte Teilchen durch das System, und zwar in entgegen gesetzte Richtungen (siehe Abb.). „Für ein verschränktes Paar ist zunächst nicht definiert, ob das Holon rechts oder links vom Doublon ist. Beide Konstellationen sind gleichzeitig vorhanden“, erläutert Dr. Marc Cheneau, Wissenschaftler in der Abt. Quanten-Vielteilchensysteme. „Aber wenn ich einen doppelt besetzten Platz oder ein Loch sehe, dann weiß ich, wo ich das jeweilige Gegenstück finde. Das ist die Korrelation, von der wir sprechen.“

Nun beobachten die Wissenschaftler, wie sich die Korrelationen in dem System ausbreiten. Dies gelingt mit einem neuartigen Mikroskopieverfahren, das einzelne Atome auf ihren jeweiligen Gitterplätzen sichtbar macht. Vereinfacht ausgedrückt, werden in bestimmten Zeitabständen immer wieder Schnappschüsse von den Atomen im Gitter gemacht, die zeigen, wo sich die Doublon- und Holon-Teilchen gerade befinden. Aus der Strecke, die sich die beiden Partnerteilchen in einem bestimmten Zeitraum voneinander entfernt haben, lässt sich die Ausbreitungsgeschwindigkeit der jeweiligen Korrelation bestimmen. Diese Messergebnisse sind in guter Übereinstimmung mit den Werten, die sich aus dem oben erwähnten Modell ergeben.

„Wenn Quanteninformation mit Lichtquanten übertragen wird, ist die Sache klar: die Daten werden mit Lichtgeschwindigkeit weiter gegeben“, erklärt Dr. Cheneau. „Anders sieht es aus, wenn Quantenbits oder Quantenregister mit Festkörperstrukturen realisiert werden. Hier muss die Quantenkorrelation von Bit zu Bit weiter gereicht werden. Wenn wir verstehen, wie schnell dieser Prozess ablaufen kann, wissen wir auch, was die Geschwindigkeit zukünftiger Quantenprozessoren begrenzen könnte. “ [Olivia Meyer-Streng]

Originalveröffentlichung:
Marc Cheneau, Peter Barmettler, Dario Poletti, Manuel Endres, Peter Schauß, Takeshi Fukuhara, Christian Gross, Immanuel Bloch, Corinna Kollath and Stefan Kuhr
Light-cone-like spreading of correlations in a quantum many-body system
Nature, DOI:10.1038/nature10748

Kontakt:
Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 89 / 32905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Marc Cheneau
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 89 / 32905 -631
E-Mail: marc.cheneau@mpq.mpg.de

Prof. Dr. Stefan Kuhr
University of Strathclyde
Department of Physics
107 Rottenrow East
Glasgow G4 0NG, U.K.
Tel.: +44 141 / 548 -3364
E-Mail: stefan.kuhr@strath.ac.uk

Prof. Dr. Corinna Kollath
Département de Physique Théorique
Université de Genève
24, Quai Ernest Ansermet
1211 Genève, Switzerland
Tel.: +41 22 / 37 96 241
E-Mail: corinna.kollath@unige.ch

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie