Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Super-Photonen“ flackern wie eine Kerze

22.01.2014
Nicht nur Kerzen flackern: Auch photonische Bose-Einstein-Kondensate ändern andauernd ihre Leuchtintensität.

Physiker der Universität Bonn haben diese theoretisch vorhergesagte Eigenschaft der „Super-Photonen“ nun erstmals experimentell nachweisen können. Das Flackern lässt sich eventuell für optische Anwendungen nutzen. Die Ergebnisse werden nun in den „Physical Review Letters“ vorgestellt.


Die Intensität des "Super-Photons" schwankt umso stärker, je mehr Farbstoffmoleküle zur Kühlung eingesetzt werden.

(c) AG Prof. Weitz/Uni Bonn


In dieser Kammer wird das photonische Bose-Einstein-Kondensat erzeugt.

(c) AG Prof. Weitz/Uni Bonn

Photonen sind winzige unteilbare Licht-Portionen. Unter geeigneten Bedingungen lassen sich viele tausend dieser „Licht-Atome“ zu einem Super-Photon verschmelzen. Physiker sprechen von einem photonischen Bose-Einstein-Kondensat. Man kennt derartige Kondensate von normalen Atomen. Theoretisch wurde zwar postuliert, dass sie sich auch aus Lichtpartikeln erzeugen lassen sollten. Ihre praktische Herstellung wurde aber lange für unmöglich gehalten. Als der Arbeitsgruppe um den Bonner Physiker Prof. Dr. Martin Weitz dieser Schritt Ende 2010 erstmals gelang, galt das in der Fachwelt als kleine Sensation.

Super-Photonen verhalten sich in vielen Aspekten wie Laserlicht. Mit einem wichtigen Unterschied: Laser strahlen sehr gleichmäßig. Photonische Bose-Einstein-Kondensate können dagegen flackern – so sagt es zumindest die Theorie voraus. Und exakt diese Voraussage konnten die Bonner Physiker nun experimentell bestätigen. „Die Intensität unserer Super-Photonen schwankt“, erläutert Prof. Weitz. „Mal leuchten sie stärker, mal weniger stark.“

Rasante Intensitäts-Änderung

Das Flackern einer Kerze lässt sich mit bloßem Auge sehen. Die Super-Photonen flackern dagegen extrem schnell: Ihre Intensität ändert sich viele hundert Millionen Mal pro Sekunde. „Das ist auch ein fundamentaler Unterschied zu atomaren Bose-Einstein-Kondensaten“, betont Prof. Weitz. Um Atome zu kondensieren, muss man sie sehr stark abkühlen und genügend von ihnen auf kleinem Raum konzentrieren. Wenn man das tut, werden sie plötzlich ununterscheidbar: Sie verhalten sich wie ein einziges riesiges „Superteilchen“. Solange dieses Superteilchen existiert, enthält es immer dieselbe Menge an Atomen.

Die Herstellung eines Super-Photons funktioniert ganz ähnlich: Man sperrt eine Menge Photonen auf kleinem Raum zusammen und kühlt sie gleichzeitig ab. Die Kühlung erfolgt beispielsweise durch Zugabe von Farbmolekülen. Diese wirken wie kleine Eisschränke: Sie verschlucken „warme“ Lichtteilchen und spucken sie anschließend gekühlt wieder aus.

Auch wenn sich das Super-Photon bereits gebildet hat, dauert dieser Prozess an: Immer wieder kollidieren einzelne Lichtpartikel aus dem Super-Photon mit den Farbstoff-Molekülen, werden von ihnen verschluckt und anschließend wieder ausgespuckt. Das photonische Bose-Einstein-Kondensat besteht also in einem Moment aus 10.000 Lichtpartikeln, ein paar Milliardstel Sekunden später vielleicht nur noch aus 1.000 und wieder später aus 17.000. Diese starken Schwankungen beobachtet man aber nur, wenn sehr viele Farbstoff-Moleküle vorhanden sind.

Neue technologische Möglichkeiten

Das Flackern der Super-Photonen eröffnet eventuell auch neue technologische Möglichkeiten. Momentan wird bei der Erzeugung feiner Strukturen häufig Laserlicht eingesetzt. Licht besteht aus Wellen. Wenn man zwei Laserstrahlen übereinander legt, können sich diese Wellen addieren oder auslöschen – je nachdem, wie die Wellenberge und -täler aufeinander treffen. Dieses Phänomen nennt sich Interferenz; bei manchen technologischen Anwendungen ist es äußerst unerwünscht.

„Photonische Bose-Einstein-Kondensate interferieren deutlich weniger miteinander“, sagt Prof. Weitz. „Da die Höhe der Wellenberge ebenso wie die Tiefe der Täler schwankt, ist es sehr viel unwahrscheinlicher, dass sich ein Berg und ein Tal gegenseitig genau auslöschen.“

Publikation: Observation of grand-canonical number statistics in a photon Bose-Einstein condensate; Physical Review Letters (DOI: 10.1103/PhysRevLett.112.030401)

Kontakt:

Prof. Dr. Martin Weitz
Institut für Angewandte Physik der Universität Bonn
Tel. 0228/73-4837 oder -4836
E-Mail: Martin.Weitz@uni-bonn.de
Dr. Jan Klaers
Institut für Angewandte Physik der Universität Bonn
Tel. 0228/73-3453
E-Mail: klaers@iap.uni-bonn.de
Julian Schmitt
Institut für Angewandte Physik der Universität Bonn
Tel. 0228/73-3453
E-Mail: schmitt@iap.uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.iap.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie