Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Super-Photonen“ flackern wie eine Kerze

22.01.2014
Nicht nur Kerzen flackern: Auch photonische Bose-Einstein-Kondensate ändern andauernd ihre Leuchtintensität.

Physiker der Universität Bonn haben diese theoretisch vorhergesagte Eigenschaft der „Super-Photonen“ nun erstmals experimentell nachweisen können. Das Flackern lässt sich eventuell für optische Anwendungen nutzen. Die Ergebnisse werden nun in den „Physical Review Letters“ vorgestellt.


Die Intensität des "Super-Photons" schwankt umso stärker, je mehr Farbstoffmoleküle zur Kühlung eingesetzt werden.

(c) AG Prof. Weitz/Uni Bonn


In dieser Kammer wird das photonische Bose-Einstein-Kondensat erzeugt.

(c) AG Prof. Weitz/Uni Bonn

Photonen sind winzige unteilbare Licht-Portionen. Unter geeigneten Bedingungen lassen sich viele tausend dieser „Licht-Atome“ zu einem Super-Photon verschmelzen. Physiker sprechen von einem photonischen Bose-Einstein-Kondensat. Man kennt derartige Kondensate von normalen Atomen. Theoretisch wurde zwar postuliert, dass sie sich auch aus Lichtpartikeln erzeugen lassen sollten. Ihre praktische Herstellung wurde aber lange für unmöglich gehalten. Als der Arbeitsgruppe um den Bonner Physiker Prof. Dr. Martin Weitz dieser Schritt Ende 2010 erstmals gelang, galt das in der Fachwelt als kleine Sensation.

Super-Photonen verhalten sich in vielen Aspekten wie Laserlicht. Mit einem wichtigen Unterschied: Laser strahlen sehr gleichmäßig. Photonische Bose-Einstein-Kondensate können dagegen flackern – so sagt es zumindest die Theorie voraus. Und exakt diese Voraussage konnten die Bonner Physiker nun experimentell bestätigen. „Die Intensität unserer Super-Photonen schwankt“, erläutert Prof. Weitz. „Mal leuchten sie stärker, mal weniger stark.“

Rasante Intensitäts-Änderung

Das Flackern einer Kerze lässt sich mit bloßem Auge sehen. Die Super-Photonen flackern dagegen extrem schnell: Ihre Intensität ändert sich viele hundert Millionen Mal pro Sekunde. „Das ist auch ein fundamentaler Unterschied zu atomaren Bose-Einstein-Kondensaten“, betont Prof. Weitz. Um Atome zu kondensieren, muss man sie sehr stark abkühlen und genügend von ihnen auf kleinem Raum konzentrieren. Wenn man das tut, werden sie plötzlich ununterscheidbar: Sie verhalten sich wie ein einziges riesiges „Superteilchen“. Solange dieses Superteilchen existiert, enthält es immer dieselbe Menge an Atomen.

Die Herstellung eines Super-Photons funktioniert ganz ähnlich: Man sperrt eine Menge Photonen auf kleinem Raum zusammen und kühlt sie gleichzeitig ab. Die Kühlung erfolgt beispielsweise durch Zugabe von Farbmolekülen. Diese wirken wie kleine Eisschränke: Sie verschlucken „warme“ Lichtteilchen und spucken sie anschließend gekühlt wieder aus.

Auch wenn sich das Super-Photon bereits gebildet hat, dauert dieser Prozess an: Immer wieder kollidieren einzelne Lichtpartikel aus dem Super-Photon mit den Farbstoff-Molekülen, werden von ihnen verschluckt und anschließend wieder ausgespuckt. Das photonische Bose-Einstein-Kondensat besteht also in einem Moment aus 10.000 Lichtpartikeln, ein paar Milliardstel Sekunden später vielleicht nur noch aus 1.000 und wieder später aus 17.000. Diese starken Schwankungen beobachtet man aber nur, wenn sehr viele Farbstoff-Moleküle vorhanden sind.

Neue technologische Möglichkeiten

Das Flackern der Super-Photonen eröffnet eventuell auch neue technologische Möglichkeiten. Momentan wird bei der Erzeugung feiner Strukturen häufig Laserlicht eingesetzt. Licht besteht aus Wellen. Wenn man zwei Laserstrahlen übereinander legt, können sich diese Wellen addieren oder auslöschen – je nachdem, wie die Wellenberge und -täler aufeinander treffen. Dieses Phänomen nennt sich Interferenz; bei manchen technologischen Anwendungen ist es äußerst unerwünscht.

„Photonische Bose-Einstein-Kondensate interferieren deutlich weniger miteinander“, sagt Prof. Weitz. „Da die Höhe der Wellenberge ebenso wie die Tiefe der Täler schwankt, ist es sehr viel unwahrscheinlicher, dass sich ein Berg und ein Tal gegenseitig genau auslöschen.“

Publikation: Observation of grand-canonical number statistics in a photon Bose-Einstein condensate; Physical Review Letters (DOI: 10.1103/PhysRevLett.112.030401)

Kontakt:

Prof. Dr. Martin Weitz
Institut für Angewandte Physik der Universität Bonn
Tel. 0228/73-4837 oder -4836
E-Mail: Martin.Weitz@uni-bonn.de
Dr. Jan Klaers
Institut für Angewandte Physik der Universität Bonn
Tel. 0228/73-3453
E-Mail: klaers@iap.uni-bonn.de
Julian Schmitt
Institut für Angewandte Physik der Universität Bonn
Tel. 0228/73-3453
E-Mail: schmitt@iap.uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.iap.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften