Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Südpol-Teleskop liefert überraschenden Befund zu kosmischen Super-Beschleunigern

19.04.2012
Aus dem Kosmos prasseln Teilchen auf die Erdatmosphäre, die millionenfach höhere Energie haben als die im stärksten Beschleuniger der Erde.
Wie diese sogenannte kosmische Teilchenstrahlung so stark beschleunigt wird, ist allerdings noch weitgehend rätselhaft. Mit dem weltgrößten Neutrino-Teleskop IceCube in der Antarktis haben Forscher festgestellt, dass eine der vermuteten Arten kosmischer Super-Beschleuniger möglicherweise doch nicht für die energiereichsten Teilchen verantwortlich ist. Damit wird eine der beiden führenden Hypothesen zum Ursprung der höchstenergetischen kosmischen Teilchen infrage gestellt, wie das internationale Forscherteam im britischen Fachjournal "Nature" berichtet.

Die vor hundert Jahren entdeckte Kosmische Strahlung bildet einen beständigen Teilchenhagel aus dem All. Manche Wasserstoff-Atomkerne (Protonen) darin haben so viel Energie wie ein schnell geschlagener Tennisball - dabei ist der Durchmesser eines Tennisballs 40 Billionen Mal größer. “Wir wissen, dass es diese hochenergetische Kosmische Strahlung gibt, aber wir wissen nicht, woher sie kommt", betont DESY-Forscher Prof. Alexander Kappes, der mit dem Neutrino-Teleskop dem Ursprung der Kosmischen Strahlung auf der Spur ist. Die Teilchen der Kosmischen Strahlung sind elektrisch geladen und werden auf ihrem Weg durchs All von zahlreichen Magnetfeldern abgelenkt. Daher lässt sich aus der Richtung, aus der sie die Erde treffen, nicht mehr auf ihre Quelle schließen.

Aussichtsreiche Kandidaten für die Quellen der höchstenergetischen Teilchen sind supermassereiche Schwarze Löcher im Zentrum aktiver Galaxien und sogenannte Gamma Ray Bursts (GRB). "Gamma Ray Bursts sind - nach dem Urknall - die gewaltigsten Explosionen, die wir im Kosmos kennen", betont Kappes, der auch Gastprofessor an der Berliner Humboldt-Universität ist. Sie überstrahlen für einige Sekunden das gesamte restliche Universum im Bereich der Gammastrahlung. Man nimmt an, dass es sich bei langen Gamma Ray Bursts, die mehr als zwei Sekunden lang aufflackern, um den Kernkollaps eines massereichen Sterns in einer fernen Galaxie handelt, wobei ein Schwarzes Loch entsteht.

Dieser Prozess setzt genug Energie frei, um die subatomaren Teilchen der Kosmischen Strahlung auf die beobachteten Energien zu beschleunigen. Allerdings sollten mit den energiereichen Atomkernen auch Neutrinos entstehen. Diese geisterhaften Elementarteilchen sind ultraleichte Cousins des Elektrons, die durch fast alles ungehindert hindurchfliegen. Um sie nachzuweisen, muss man riesige Detektoren einsetzen. Das Neutrino-Teleskop IceCube benutzt das ewige Eis des Südpols als Teil des Detektors. IceCube späht unter der Eisdecke mit mehr als 5000 einzelnen optischen Sensoren (Photomultipliern) in rund einem Kubikkilometer antarktischem Eis nach den extrem seltenen Zusammenstößen eines Neutrinos mit einem Atomkern.

Mit diesem weltweit empfindlichsten Neutrino-Teleskop hat das internationale IceCube-Forscherteam rund 300 Gamma Ray Bursts aus den Jahren 2008 bis 2010 untersucht. Wenn Gamma Ray Bursts die Quelle der höchstenergetischen kosmischen Teilchenstrahlung sind, sollten von den Ausbrüchen nicht nur Gammastrahlen, sondern auch Neutrinos auf direktem Weg die Erde erreichen. Denn Neutrinos sind elektrisch neutral und werden daher nicht von Magnetfeldern abgelenkt. "Erstmals haben wir ein ausreichend empfindliches Instrument, das einen neuen Blick auf die Erzeugung der Kosmischen Strahlung und auf die inneren Prozesse von Gamma Ray Bursts eröffnet", unterstreicht IceCube-Sprecher Prof. Greg Sullivan von der Universität von Maryland (USA).
Doch IceCube fand in den zwei Jahren Untersuchungszeit überraschenderweise kein einziges Neutrino, das zu einem der untersuchten rund 300 Ausbrüche passt. "Aus der Beobachtung folgen zwei Möglichkeiten", sagt Kappes. "Entweder ist unsere Vorstellung, dass Gamma Ray Bursts eine Hauptquelle der extrem energiereichen Kosmischen Strahlung sind, falsch. Oder unsere Rechenmodelle von den Vorgängen in einem Gamma Ray Burst beruhen auf falschen oder zu stark vereinfachten Annahmen." In jedem Fall müssen die gegenwärtigen Modelle zur Produktion von kosmischer Strahlung und Neutrinos in Gamma Ray Bursts überarbeitet werden.

"Obwohl wir nicht herausgefunden haben, woher die Kosmische Strahlung kommt, haben wir einen wichtigen Schritt zum Ausschluss einer der bevorzugten Vorhersagen erreicht", unterstreicht IceCube-Projektleiter Prof. Francis Halzen von der Universität von Wisconsin. Mit der vollen Ausbaustufe und mit zunehmender Messzeit wird IceCube in den kommenden Jahren wichtige Informationen zur Klärung dieser Frage liefern.

Über IceCube
IceCube ist ein Teleskop für energiereiche Neutrinos am geographischen Südpol. 5160 optische Sensoren (Photomultiplier), die bis in 2,5 Kilometer Tiefe ins ewige Eis eingelassen sind, spähen nach den Signalen seltener Neutrino-Kollisionen im Eis. Die gesamte Anlage hat ein Volumen von einem Kubikkilometer, das ist 400 Mal so groß wie die große Pyramide von Gizeh. Das weltweit größte und empfindlichste Neutrinoteleskop wird von einer Kooperation von rund 250 Physikern aus den USA, Deutschland, Schweden, Belgien, der Schweiz, Japan, Kanada, Neuseeland, Australien und Barbados betrieben. Aus Deutschland sind neun Institute beteiligt: die Rheinisch-Westfälische Technische Hochschule Aachen, die Humboldt-Universität zu Berlin, die Ruhr-Universität Bochum, die Rheinische Friedrich-Wilhelms-Universität Bonn, die Technische Universität Dortmund, die Johannes-Gutenberg-Universität Mainz, die Technische Universität München, und die Bergische Universität Wuppertal sowie das Deutsche Elektronen-Synchrotron DESY. Der international organisierte und finanzierte Bau von IceCube wurde 2010 abgeschlossen. Der Aufbau des Experiments und die Auswertung der Daten in Deutschland wurden durch das Bundesministerium für Bildung und Forschung (BMBF), die Deutsche Forschungsgemeinschaft (DFG) und die Helmholtz-Allianz für Astroteilchenphysik (HAP) gefördert.

Originalveröffentlichung:
"An Absence of Neutrinos Associated with Cosmic Ray Acceleration in Gamma-Ray Bursts"; Abbasi et al.; "Nature", Bd. 484, S. 351, DOI: 10.1038/nature11068

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten