Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stuttgarter Physiker beobachten neues Quantenphänomen

31.10.2013
Riesenatom schluckt Quantengas

Physiker der Universität Stuttgart untersuchten ein einzelnes mikrometergroßes Atom, das mehrere zehntausend normale Atome in seinem Elektronenorbital enthält. Hierfür realisierten die Wissenschaftler erstmals ein Modellsystem im Labor, in dem die Wechselwirkung eines einzelnen Elektrons mit vielen Atomen in seinem Orbital studiert werden kann.


Rydberg-Atom
Universität Stuttgart, 5. Physikalisches Institut

Hochangeregtes Rydberg-Atom, bestehend aus einem einzelnen Elektron (blau), das einen positiv geladenen Atomkern (rot) umkreist. Das Rydberg-
Atom erreicht dabei die Größe der ultra-kalten Atom-Wolke. Das einzelne Elektron erzeugt Schwingungen (Phononen) im umgebenden Quantengas

Das Verständnis der Wechselwirkung von Elektronen mit der Materie ist wesentlich für die Lösung fundamentaler Fragestellungen und technischer Probleme. Die Ergebnisse wurden in der renommierten Fachzeitschrift Nature veröffentlicht*) – auch aufgrund der Vielzahl von weiteren denkbaren Anwendungen dieses Systems, zum Beispiel in der Quantenoptik.

Die Eigenschaften von Stoffen beruhen im Wesentlichen auf den Wechselwirkungen von Elektronen mit ihrer Umgebung. Ein Beispiel dafür ist die elektrische Leitfähigkeit: Elektronen stoßen mit den Atomen des umgebenden Materials zusammen und regen dadurch Schallwellen, so genannte Phononen, an. Durch diese Schwingungen kann ein Elektron Energie abgeben und wird abgebremst, was den elektrischen Widerstand verursacht. In bestimmten Materialien, den so genannten Supraleitern, kann die Wechselwirkung mit Phononen jedoch auch zum Verschwinden jeglichen elektrischen Widerstandes führen.

Am besten geeignet für eine systematische Untersuchung solcher Prozesse ist ein einzelnes Elektron. Hierzu studierten die Stuttgarter Physiker eine Wolke aus ultrakalten Atomen nahe dem absoluten Nullpunkt, ein Bose-Einstein Kondensat. Die Grundidee ist einfach: Anstelle einer technisch aufwändigen Elektronenfalle nutzen die Wissenschaftler die Tatsache, dass Elektronen in der Natur von einem positiv geladenen Atomkern gebunden werden, den sie – so das klassische Bild - auf Ellipsenbahnen umkreisen. Diese Bahnen sind typischerweise viel kleiner als ein Nanometer.

Um einem Elektron die Wechselwirkung mit vielen Atomen zu ermöglichen, wird ein Atom aus einer Wolke von 100.000 Atomen mit Hilfe von Laserlicht angeregt. Dadurch bläht sich die Bahn eines einzelnen Elektrons auf mehrere Mikrometer auf. Es entsteht ein so genanntes Rydberg-Atom. Dieses ist - auf atomarer Skala - von gewaltigen Ausmaßen, größer als die meisten Bakterien, die jeweils aus mehreren Milliarden bis Billionen von Atomen bestehen. Im Inneren des Rydberg-Atoms befinden sich dann mehrere zehntausend andere Atome aus der kalten Wolke.

„Es ist, als hätte das Riesenatom das Quantengas regelrecht verschluckt“, erklärt Hauptautor Jonathan Balewski, Doktorand am 5. Physikalischen Institut unter der Leitung von Prof. Tilman Pfau. Das Elektron ist dadurch gleichzeitig in ein definiertes Volumen eingesperrt und kann trotzdem mit einer großen Anzahl von Atomen interagieren. Diese Wechselwirkung ist so stark, dass die gesamte Atomwolke von dem einzelnen Elektron deutlich beeinflusst wird. Abhängig vom Quantenzustand dieses Elektrons werden Phononen in der Atomwolke angeregt, die als kollektive Oszillationen der gesamten Wolke bis hin zu Atomverlusten aus der Falle gemessen werden können.

Die bisherigen experimentellen Beobachtungen in der Gruppe von Prof. Tilman Pfau konnten in Zusammenarbeit mit theoretischen Physikern um Prof. Hans Peter Büchler weitgehend erklärt werden. Diese Arbeit ist jedoch die Ausgangsbasis für eine ganze Reihe weiterer Experimente. Den bisherigen Untersuchungen zufolge hinterlässt das Elektron eine deutliche Spur in der umgebenden Atomwolke. Damit läge zum Beispiel die Abbildung eines einzelnen Elektrons in einem genau definierten Quantenzustand im Bereich des technisch Möglichen.

Die Arbeit entstand im Rahmen des transregionalen Sonderforschungsbereichs SFB/TRR 21 (Control of quantum correlations in tailored matter) und wurde von der Deutschen Forschungsgemeinschaft DFG sowie dem European Research Council unterstützt.

*)Originalpublikation: J.B. Balewski, A.T. Krupp, A. Gaj, D. Peter, H.P. Büchler, R. Löw, S. Hofferberth and T. Pfau, Coupling a single electron to a Bose-Einstein condensate; Nature 31.10.2013, volume 502, issue 7473, pp 664-667; http://dx.doi.org/10.1038/nature12592

Weitere Informationen:
Prof. Tilman Pfau, Jonathan Balewski, 5. Physikalisches Institut, Tel. 0711/685-64820,
E-mail: t.pfau (at) physik.uni-stuttgart.de, j.balewski (at) physik.uni-stuttgart.de,

http://www.pi5.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.pi5.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blick ins Universum
15.01.2018 | Georg-August-Universität Göttingen

nachricht Extrem helle und schnelle Lichtemission
11.01.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Im Focus: Extrem helle und schnelle Lichtemission

Eine in den vergangenen Jahren intensiv untersuchte Art von Quantenpunkten kann Licht in allen Farben wiedergeben und ist sehr hell. Ein internationales Forscherteam mit Beteiligung von Wissenschaftlern der ETH Zürich hat nun herausgefunden, warum dem so ist. Die Quantenpunkte könnten dereinst in Leuchtdioden zum Einsatz kommen.

Ein internationales Team von Wissenschaftlern der ETH Zürich, von IBM Research Zurich, der Empa und von vier amerikanischen Forschungseinrichtungen hat die...

Im Focus: Paradigmenwechsel in Paris: Den Blick für den gesamten Laserprozess öffnen

Die neusten Trends und Innovationen bei der Laserbearbeitung von Composites hat das Fraunhofer-Institut für Lasertechnik ILT im März 2018 auf der JEC World Composite Show im Fokus: In Paris demonstrieren die Forscher auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL unter anderem, wie sich Verbundwerkstoffe mit dem Laser fügen, strukturieren, schneiden und bohren lassen.

Keine andere Branche hat in der Öffentlichkeit für so viel Aufmerksamkeit für Verbundwerkstoffe gesorgt wie die Automobilindustrie, die neben der Luft- und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

Registrierung offen für Open Science Conference 2018 in Berlin

11.01.2018 | Veranstaltungen

Wie sieht die Bioökonomie der Zukunft aus?

10.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit mikroskopischen Luftblasen dämmen

15.01.2018 | Architektur Bauwesen

Feldarbeiten der größten Bodeninventur Deutschlands sind abgeschlossen

15.01.2018 | Agrar- Forstwissenschaften

Perowskit-Solarzellen: Es muss gar nicht perfekt sein

15.01.2018 | Materialwissenschaften