Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Störende Blitze schaffen den besseren Plasmaspiegel

29.10.2012
Physiker der Universität Jena entwickeln neue Methode zur Erzeugung von intensiveren Attosekundenpulsen

Atome und Moleküle können Wissenschaftler nicht einfach unter ein optisches Mikroskop legen, um zu erfahren, wie sie aufgebaut sind und wie sie funktionieren. Solch winzige Untersuchungsobjekte verlangen besondere Techniken, um die Prozesse in ihrem Inneren zu untersuchen.


In einem Laserlabor am Institut für Optik und Quantenelektronik der Universität Jena bereiten der Masterstudent Erich Eckner und die Doktoranden Jana Bierbach und Christian Rödel (v. l.) eine Targetkammer für ein Experiment vor, um sogenannte relativistische Laserplasmen zu untersuchen.

Foto: Jan-Peter Kasper/FSU

So werden sie z. B. mit extrem kurzen Lichtblitzen mit einer Dauer von wenigen 100 Attosekunden beschossen, um über deren Wechselwirkung mit den Atomen und Molekülen auf indirekte Art und Weise Informationen über die Elektronendynamik zu erhalten. Attosekundenpulse sind extrem kurze Lichtblitze, die nur eine Dauer von weniger als einem Millionstel einer Milliardstelsekunde besitzen. Die Erzeugung solcher Lichtblitze stellt die Wissenschaft vor besondere Herausforderungen.

Physikerinnen und Physikern der Friedrich-Schiller-Universität Jena ist es jetzt gelungen, eine besonders wirkungsvolle Methode zur Erzeugung dieser Lichtpulse zu entwickeln. Das Jenaer Team hat die erzeugte Strahlung gemeinsam mit Wissenschaftlern aus Düsseldorf und Belfast charakterisiert und die „Methode zu einer der bisher Effizientesten“ weiterentwickelt, freut sich Christian Rödel vom Institut für Optik und Quantenelektronik der Universität Jena. Dabei benutzen die Forscher sogenannte relativistische Spiegel. Ein Laserstrahl erzeugt diesen Spiegel durch einen Schuss auf eine Oberfläche, die dabei so stark aufheizt, dass sie in eine Art metallischen Zustand übergeht – ein reflektierendes Plasma. Vom elektrischen Feld des Lasers angetrieben, beginnt dieses Plasma mit nahezu Lichtgeschwindigkeit zu schwingen.
„Das ist die ideale Ausgangssituation, um den darauf fokussierten Laserpuls in einen Attosekundenpuls umzuwandeln“, erklärt Rödel. „Diese Methode ist zwar schon seit einigen Jahren bekannt, allerdings haben wir erstmals deren Effizienz untersucht und dabei Erstaunliches festgestellt“, betont der Jenaer Physiker. Die Effizienz ist in diesem Fall der Anteil der Energie im Attosekundenpuls an der Energie, die man zu dessen Erzeugung aufgewandt hat. Nach herkömmlicher Vorgehensweise ist diese Methode nicht viel wirkungsvoller, teilweise sogar ineffizienter, als andere. Dass jedoch viel mehr Potenzial in ihr steckt, konnte Rödel gemeinsam mit Jana Bierbach und Erich Eckner aus Jena und weiteren Partnern beweisen, indem sie eine weit verbreitete Annahme widerlegten, die die Methode bisher ausbremste. Entscheidend ist dabei der Zustand des Plasmaspiegels. „Die Experten sind immer vom idealen Spiegel ausgegangen, das heißt von einem harten Übergang vom Vakuum zum reflektierenden Plasma“, sagt Rödel. „Weicht man allerdings den Spiegel etwas auf, kann der Plasmaspiegel stärker schwingen und man erhält intensivere Attosekundenpulse.“ Diese Aufweichung erreichten die Jenaer Experten dadurch, dass sie ursprünglich als störend angesehene Effekte während des Laserbeschusses zuließen. Normalerweise gehen dem extrem intensiven Laserpuls weniger starke Lichtblitze voraus, die den Spiegel angreifen. Mit technischen Hilfsmitteln lassen sich diese zwar herausfiltern, doch die Jenaer Physiker ließen einige durch und erkannten, dass sie sogar hilfreich sein können und den Erzeugungsprozess sehr begünstigen können, wenn man sie genau dosiert.

Die neuen Erkenntnisse – publiziert in der aktuellen Ausgabe des renommierten Fachjournals „Physical Review Letters“ – tragen elementar dazu bei, noch intensivere Attosekunden-Lichtblitze zu produzieren, sind die Jungforscher überzeugt. Diese können Forscherinnen und Forscher dann weltweit in Experimenten einsetzen und viel mehr über die Elektronendynamik erfahren – was also passiert, wenn Elektronen zwischen Atomen und Molekülen hin und her springen.

Originalpublikation:
C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. Galestian Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, G. G. Paulus: "Harmonic Generation of Relativistic Plasma Surfaces in Ultrasteep Plasma Density Gradients", Physical Review Letters 109, 125002 (2012), DOI: 10.1103/PhysRevLett.109.125002

Kontakt:
Christian Rödel / Prof. Dr. Gerhard G. Paulus
Institut für Optik und Quantenelektronik der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947208 und 947200
E-Mail: christian.roedel[at]uni-jena.de / gerhard.paulus[at]uni-jena.de

Sebastian Hollstein | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Designte Proteine gegen Muskelschwund

29.06.2017 | Biowissenschaften Chemie

Benzin und Chemikalien aus Pflanzenresten

29.06.2017 | Biowissenschaften Chemie

Hochleitfähige Folien ermöglichen großflächige OLED-Beleuchtung

29.06.2017 | Energie und Elektrotechnik