Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Störende Blitze schaffen den besseren Plasmaspiegel

29.10.2012
Physiker der Universität Jena entwickeln neue Methode zur Erzeugung von intensiveren Attosekundenpulsen

Atome und Moleküle können Wissenschaftler nicht einfach unter ein optisches Mikroskop legen, um zu erfahren, wie sie aufgebaut sind und wie sie funktionieren. Solch winzige Untersuchungsobjekte verlangen besondere Techniken, um die Prozesse in ihrem Inneren zu untersuchen.


In einem Laserlabor am Institut für Optik und Quantenelektronik der Universität Jena bereiten der Masterstudent Erich Eckner und die Doktoranden Jana Bierbach und Christian Rödel (v. l.) eine Targetkammer für ein Experiment vor, um sogenannte relativistische Laserplasmen zu untersuchen.

Foto: Jan-Peter Kasper/FSU

So werden sie z. B. mit extrem kurzen Lichtblitzen mit einer Dauer von wenigen 100 Attosekunden beschossen, um über deren Wechselwirkung mit den Atomen und Molekülen auf indirekte Art und Weise Informationen über die Elektronendynamik zu erhalten. Attosekundenpulse sind extrem kurze Lichtblitze, die nur eine Dauer von weniger als einem Millionstel einer Milliardstelsekunde besitzen. Die Erzeugung solcher Lichtblitze stellt die Wissenschaft vor besondere Herausforderungen.

Physikerinnen und Physikern der Friedrich-Schiller-Universität Jena ist es jetzt gelungen, eine besonders wirkungsvolle Methode zur Erzeugung dieser Lichtpulse zu entwickeln. Das Jenaer Team hat die erzeugte Strahlung gemeinsam mit Wissenschaftlern aus Düsseldorf und Belfast charakterisiert und die „Methode zu einer der bisher Effizientesten“ weiterentwickelt, freut sich Christian Rödel vom Institut für Optik und Quantenelektronik der Universität Jena. Dabei benutzen die Forscher sogenannte relativistische Spiegel. Ein Laserstrahl erzeugt diesen Spiegel durch einen Schuss auf eine Oberfläche, die dabei so stark aufheizt, dass sie in eine Art metallischen Zustand übergeht – ein reflektierendes Plasma. Vom elektrischen Feld des Lasers angetrieben, beginnt dieses Plasma mit nahezu Lichtgeschwindigkeit zu schwingen.
„Das ist die ideale Ausgangssituation, um den darauf fokussierten Laserpuls in einen Attosekundenpuls umzuwandeln“, erklärt Rödel. „Diese Methode ist zwar schon seit einigen Jahren bekannt, allerdings haben wir erstmals deren Effizienz untersucht und dabei Erstaunliches festgestellt“, betont der Jenaer Physiker. Die Effizienz ist in diesem Fall der Anteil der Energie im Attosekundenpuls an der Energie, die man zu dessen Erzeugung aufgewandt hat. Nach herkömmlicher Vorgehensweise ist diese Methode nicht viel wirkungsvoller, teilweise sogar ineffizienter, als andere. Dass jedoch viel mehr Potenzial in ihr steckt, konnte Rödel gemeinsam mit Jana Bierbach und Erich Eckner aus Jena und weiteren Partnern beweisen, indem sie eine weit verbreitete Annahme widerlegten, die die Methode bisher ausbremste. Entscheidend ist dabei der Zustand des Plasmaspiegels. „Die Experten sind immer vom idealen Spiegel ausgegangen, das heißt von einem harten Übergang vom Vakuum zum reflektierenden Plasma“, sagt Rödel. „Weicht man allerdings den Spiegel etwas auf, kann der Plasmaspiegel stärker schwingen und man erhält intensivere Attosekundenpulse.“ Diese Aufweichung erreichten die Jenaer Experten dadurch, dass sie ursprünglich als störend angesehene Effekte während des Laserbeschusses zuließen. Normalerweise gehen dem extrem intensiven Laserpuls weniger starke Lichtblitze voraus, die den Spiegel angreifen. Mit technischen Hilfsmitteln lassen sich diese zwar herausfiltern, doch die Jenaer Physiker ließen einige durch und erkannten, dass sie sogar hilfreich sein können und den Erzeugungsprozess sehr begünstigen können, wenn man sie genau dosiert.

Die neuen Erkenntnisse – publiziert in der aktuellen Ausgabe des renommierten Fachjournals „Physical Review Letters“ – tragen elementar dazu bei, noch intensivere Attosekunden-Lichtblitze zu produzieren, sind die Jungforscher überzeugt. Diese können Forscherinnen und Forscher dann weltweit in Experimenten einsetzen und viel mehr über die Elektronendynamik erfahren – was also passiert, wenn Elektronen zwischen Atomen und Molekülen hin und her springen.

Originalpublikation:
C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. Galestian Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, G. G. Paulus: "Harmonic Generation of Relativistic Plasma Surfaces in Ultrasteep Plasma Density Gradients", Physical Review Letters 109, 125002 (2012), DOI: 10.1103/PhysRevLett.109.125002

Kontakt:
Christian Rödel / Prof. Dr. Gerhard G. Paulus
Institut für Optik und Quantenelektronik der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947208 und 947200
E-Mail: christian.roedel[at]uni-jena.de / gerhard.paulus[at]uni-jena.de

Sebastian Hollstein | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie