Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Steuerbare Zufallslaser

15.07.2013
Zufallslaser sind winzige Körnchen, die ihr Licht unkontrolliert in verschiedene Richtungen abstrahlen. An der TU Wien konnte nun gezeigt werden, dass man dem Zufall auf die Sprünge helfen kann um diese exotischen Lichtquellen präzise zu steuern.

Das Licht, das sie ausstrahlen, ist ebenso individuell wie ein Fingerabdruck: Zufallslaser sind winzige Strukturen, deren Abstrahlverhalten durch chaotische Lichtstreuung in ihrem Inneren festgelegt ist. Erst seit wenigen Jahren kann man ihr Verhalten erklären, nun wurde an der TU Wien eine Methode präsentiert, mit der sich die Richtung ihrer Strahlung nach Belieben steuern lässt. Was als kuriose Idee begann, wird damit zu einer neuen Art von Lichtquelle.


Zufallslaser werden durch einen Lichtstrahl von oben mit Energie versorgt. Zufällige Unregelmäßigkeiten im Inneren (gelbe Punkte) sorgen dafür, dass das Laserlicht in ganz unterschiedliche Richtungen ausgestrahlt wird.
TU Wien


Hier wird der Lichtstrahl zuerst durch eine Maske geschickt, sodass nicht jeder Punkt im Zufallslaser (weißer Kreis) im selben Maß mit Energie versorgt wird. Durch dieses gezielte Pumpen emittiert der Zufallslaser einen Lichtstrahl genau in die gewünschte Richtung.
TU Wien

Chaos statt Spiegel

In gewöhnlichen Lasern wird Licht zwischen zwei Spiegeln hin und her reflektiert. Dabei wird das Licht von den Atomen des Lasers immer weiter verstärkt, bis ein Laserstrahl entsteht und aus dem Laser austritt. „Ein Zufallslaser hingegen kommt ohne Spiegel aus“, erklärt Prof. Stefan Rotter vom Institut für Theoretische Physik der TU Wien. „Er besteht aus einem körnigen Material, in dem das Licht immer wieder abgelenkt und auf komplizierte Bahnen gezwungen wird.“ Entlang dieser Bahnen wird das Licht verstärkt – an welchen Stellen das Licht schließlich aus dem Laser austritt, hängt von der zufälligen inneren Struktur des Lasermaterials ab.

Pumpen mit Licht

Die Energie, die der Laser zur Verstärkung des Lichtstrahls benötigt, muss von außen in Form von Licht zugeführt werden – man spricht von „optischem Pumpen“. Gewöhnliches, ungeordnetes Licht wird in den Laser gepumpt und liefert Energie, im Laser wird daraus geordnetes, kohärentes Laserlicht erzeugt, in dem Lichtteilchen exakt im gleichen Takt schwingen.

„Beim Zufallslaser ist ganz entscheidend, auf welche Weise man ihn pumpt“, sagt Stefan Rotter. Licht wird von oben auf einen scheibenförmigen Zufallslaser gestrahlt, sein Laserlicht sendet er dann radial in alle Richtungen aus. „Unsere Grundidee ist, den Zufallslaser nicht gleichförmig zu pumpen, sondern ihn mit einem ganz bestimmten Lichtmuster zu beleuchten, das dann genau die Laserstrahlung hervorruft, die wir uns wünschen“, sagt Rotter. Durch eine genau passende Beleuchtung regt man verschiedene Regionen des Zufallslasers in unterschiedlichem Maß zur Lichtverstärkung an und kann dadurch erreichen, dass der Laser sein Licht nur in einer ganz bestimmten Richtung aussendet.

Schritt für Schritt zum richtigen Lichtmuster

Wie man nun das richtige Bestrahlungsprofil finden kann, mit dem sich genau das gewünschte Laserlicht hervorrufen lässt, wird an der TU Wien in Computersimulationen untersucht. „Man beginnt mit einem zufällig gewählten Bestrahlungsmuster und beobachtet, welches Laserlicht man dadurch bekommt. Dann passt man gezielt, Schritt für Schritt, dieses Muster an, bis der Laser sein Licht genau in die gewünschte Richtung abstrahlt“, erklärt Rotter.

Nachdem keine zwei Zufallslaser genau gleich sind, muss man diesen Optimierungsprozess für jeden einzelnen Laser individuell durchführen – doch ist die Lösung erst einmal bekannt, kann man damit immer wieder dieselbe Laserstrahlung hervorrufen. Hat man einen Zufallslaser also erst einmal genau analysiert, kann man nach Belieben einstellen, in welche Richtung er strahlt – oder seinen Strahl durch eine zeitliche Abfolge unterschiedlicher Bestrahlungsmuster im Raum herumführen.

Das Team von Stefan Rotter arbeitet derzeit mit einer Forschungsgruppe in Paris zusammen, die Zufallslaser im Labor herstellt und untersucht. Gemeinsam sollen die Ergebnisse der Computersimulationen nun experimentell realisiert werden. Wenn es auch in den bevorstehenden Messungen gelingt zu zeigen, dass in Zufallslasern nichts mehr dem Zufall überlassen werden muss, würde dies einen großen Schritt in Richtung Anwendung für diese exotischen Lichtquellen bedeuten.

Rückfragehinweis:

Prof. Stefan Rotter
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-650-3063161
stefan.rotter@tuwien.ac.at
Dipl.-Ing. Matthias Liertzer
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13644
matthias.liertzer@tuwien.ac.at
Weitere Informationen:
http://prl.aps.org/abstract/PRL/v111/i2/e023902
Originalpublikation

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik