Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sternentod unter überraschenden Umständen

20.05.2010
Neue Ursache für Supernova-Explosionen gefunden

Supernovae, riesige Sternexplosionen, werden von Astronomen nicht nur als kosmische Zollstöcke verwendet, sie sind auch wichtige Produktionsstätten für die chemischen Elemente in unserem Universum. Bisher kannten die Astrophysiker zwei physikalische Prozesse, die zu diesen Energieausbrüchen führen: den Kernkollaps eines massereichen Sterns am Ende seiner Lebensdauer, und die thermonukleare Detonation eines alten Weißen Zwergsterns. Ein internationales Astronomenteam, dem auch Wissenschaftler vom Max-Planck-Institut für Astrophysik angehören, hat nun eine dritte Art dieser Sternexplosionen identifiziert, die in einem alten Sternsystem mit viel Helium stattfinden. (Nature, 20. Mai 2010)

Je nachdem, welche chemischen Elemente im Licht einer Supernova nachgewiesen werden können, ordnen Astronomen diese Explosionen in verschiedene Typen, Ia, Ib, Ic oder II. Da die Lichtkurven der Typ Ia-Supernovae eindeutige Merkmale aufweisen und sehr einheitlich sind, nutzen Astronomen sie als „Standardkerzen“ um die Entfernung zu deren jeweiligen Heimatgalaxien zu bestimmen. Diese Supernovae entstehen, wenn ein Weißer Zwergstern, der ausgebrannte Überrest eines normalen Sterns ähnlich unserer Sonne, die so genannte Chandrasekhar-Grenze erreicht, indem er Material von einem Begleitstern aufsammelt. Das nukleare Brennen im dichten Kern, der größtenteils aus Kohlenstoff und Sauerstoff besteht, zündet erneut und setzt enorme Mengen Energie frei, was dazu führt, dass der Stern als Supernova explodiert.

Der zweite Prozess, der zu einer Supernova-Explosion führt, ist der gravitative Kollaps des Kerns eines sehr massereichen, kurzlebigen Sterns am Ende seiner Lebensdauer. Die Astronomen glauben, dass diese Supernovae als Typ Ib/c oder Typ II beobachtet werden, die insbesondere in Umgebungen mit vielen jungen Sternen stattfinden. Durch die gewaltigen Energien, die bei diesen Explosionen freigesetzt werden, wird der überwiegende Teil der Sternmaterie abgestoßen, es bleibt ein Überrest, der nur einen Bruchteil der Ausgangsmasse des Sterns besitzt.

Im Januar 2005, leuchtete eine schwache Supernova (SN 2005E) im Halo der benachbarten Galaxie NGC 1032 auf, und ein internationales Astronomenteam sammelte Beobachtungsdaten von Teleskopen rund um den Erdball. Erstaunlicherweise passten die Messungen der chemischen Zusammensetzung und der Menge der herausgeschleuderten Sternmaterie zu keinem der beiden bekannten Explosionsmechanismen. In der Umgebung der Supernova deutet nichts auf kürzlich stattfindende Sternentstehung hin und auch die Masse der abgestoßenen Materie ist zu gering (nur etwa ein Drittel der Masse unserer Sonne) für die Explosion eines Riesensterns; d.h. diese Supernova kann nicht durch das Kernkollaps-Szenario erklärt werden. Die Alternative, ein explodierender, alter Weißer Zwergstern, der eine lange Zeit vom Ort seiner Entstehung bis in die Außenbereiche unterwegs war, passt aber auch nicht zu den Beobachtungen, da das Lichtspektrum auf eine andere chemische Zusammensetzung hinweist. Die bei der Supernova SN 2005E herausgeschleuderte Materie enthält einen größeren Anteil an Kalzium und Titan, als je bei einer Supernova beobachtet wurde. Diese Elemente entstehen in Kernreaktionen, die auf Helium basieren – nicht auf Kohlenstoff und Sauerstoff, woraus das Innere von Weißen Zwergen besteht.

Neue Computermodelle zeigen nun, dass die Supernova wahrscheinlich in einem System aus zwei sich eng umkreisenden Weißen Zwergen entstand, wobei die Heliumhülle des einen Sterns vom anderen angesaugt wird. „Sobald sich eine gewisse Menge angesammelt hat, beginnt das Helium auf dem Empfängerstern explosionsartig zu brennen“, sagt Paolo Mazzali (Max-Planck-Insitut für Astrophysik), der die Berechnungen zusammen mit David Arnett (Universität von Arizona) durchführte. „Die einzigartigen Prozesse, die in diesen Explosionen gewisse chemische Elemente erzeugen, könnten einige der Rätsel in Bezug auf die Anreicherung mit chemischen Elementen in unserem Universum lösen. Zum Beispiel könnte dies die Hauptquelle von Titan sein.“

Die Supernova SN 2005E ist wahrscheinlich nicht die einzige schwache Supernova, die durch diesen neuen Art von Explosionen erklärt werden kann. Mehrere ähnliche Supernovae wurden in elliptischen Galaxien gefunden und auch deren Lichtkurven, Umgebung und Materie-Auswurf werden am besten durch eine Helium-Detonation beschrieben.

„Als wie SN 2005 E beobachteten, wurde uns schnell klar, dass wir eine neue Art von Supernova sehen“, sagt Hagai Perets (Weizmann Institut, jetzt am Center for Astrophysics, Universität Harvard), der die Beobachtungen leitete. „Da diese Supernovae relativ lichtschwach sind, können wir sie nur schwer nachweisen. Aber wenn sie in Wirklichkeit gar nicht so selten sind, dann könnten sie uns Antworten auf einige der fundamentalen Rätsel über die Erzeugung der chemischen Elemente im Universum liefern.“

Außergewöhnliche Supernovae sind eine Spezialität dieses Astronomenteams. Vor wenigen Monaten berichteten sie über die erste bestätigte Beobachtung einer anderen, sehr auffälligen Supernova. Diese Art von Explosionen hinterlässt gar keinen Überrest. Je nach Masse beenden Sterne ihr Leben entweder als Weiße Zwerge, als Neutronensterne oder Schwarze Löcher. Extrem massereiche Sterne allerdings können vollständig in der Supernova-Explosion am Ende ihrer Lebendauer zerstört werden. In diesen so-genannten Paar-Instabilitäts-Supernovae werden energiereiche Lichtteilchen in Elektron-Positron-Paare umgewandelt, die den gravitativen Kollaps nicht aufhalten können. Die gewaltige Kontraktion bewirkt eine Explosion des Kerns, die den gesamten Stern vollständig auseinander reißt. Die Astronomen identifizierten erstmals eine derartige Supernova, SN 2007bi, in einer benachbarten Zwerggalaxie und veröffentlichten ihre Ergebnisse im Dezember 2009 in der renommierten Zeitschrift Nature.

Originalveröffentlichungen

H.B. Perets, A. Gal-Yam, P. Mazzali et al., A new type of stellar explosion from a helium rich progenitor, Nature, 20 May 2010

A. Gal-Yam, P. Mazzali, E. O. Ofek, et al., Supernova 2007bi was a pair-instability supernova explosion, Nature, Vol. 462, p. 624-627, 3 December 2009

Kontakt
Dr. Hannelore Hämmerle
Pressesprecherin
Max Planck Institute for Astrophysics
Phone: +49 89 30000-3980
E-Mail: hhaemmerle@mpa-garching.mpg.de
Dr. Paolo Mazzali
Max Planck Institute for Astrophysics
Scuola Normale Superiore and INAF Observatory, Italy
Phone: +49 89 30000-2221
E-Mail: pmazzali@mpa-garching.mpg.de

Dr. Hannelore Hämmerle | Max Planck Institute for Astroph
Weitere Informationen:
http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news1005_mazzali/news1005_mazzali-de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz