Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sternentod unter überraschenden Umständen

20.05.2010
Neue Ursache für Supernova-Explosionen gefunden

Supernovae, riesige Sternexplosionen, werden von Astronomen nicht nur als kosmische Zollstöcke verwendet, sie sind auch wichtige Produktionsstätten für die chemischen Elemente in unserem Universum. Bisher kannten die Astrophysiker zwei physikalische Prozesse, die zu diesen Energieausbrüchen führen: den Kernkollaps eines massereichen Sterns am Ende seiner Lebensdauer, und die thermonukleare Detonation eines alten Weißen Zwergsterns. Ein internationales Astronomenteam, dem auch Wissenschaftler vom Max-Planck-Institut für Astrophysik angehören, hat nun eine dritte Art dieser Sternexplosionen identifiziert, die in einem alten Sternsystem mit viel Helium stattfinden. (Nature, 20. Mai 2010)

Je nachdem, welche chemischen Elemente im Licht einer Supernova nachgewiesen werden können, ordnen Astronomen diese Explosionen in verschiedene Typen, Ia, Ib, Ic oder II. Da die Lichtkurven der Typ Ia-Supernovae eindeutige Merkmale aufweisen und sehr einheitlich sind, nutzen Astronomen sie als „Standardkerzen“ um die Entfernung zu deren jeweiligen Heimatgalaxien zu bestimmen. Diese Supernovae entstehen, wenn ein Weißer Zwergstern, der ausgebrannte Überrest eines normalen Sterns ähnlich unserer Sonne, die so genannte Chandrasekhar-Grenze erreicht, indem er Material von einem Begleitstern aufsammelt. Das nukleare Brennen im dichten Kern, der größtenteils aus Kohlenstoff und Sauerstoff besteht, zündet erneut und setzt enorme Mengen Energie frei, was dazu führt, dass der Stern als Supernova explodiert.

Der zweite Prozess, der zu einer Supernova-Explosion führt, ist der gravitative Kollaps des Kerns eines sehr massereichen, kurzlebigen Sterns am Ende seiner Lebensdauer. Die Astronomen glauben, dass diese Supernovae als Typ Ib/c oder Typ II beobachtet werden, die insbesondere in Umgebungen mit vielen jungen Sternen stattfinden. Durch die gewaltigen Energien, die bei diesen Explosionen freigesetzt werden, wird der überwiegende Teil der Sternmaterie abgestoßen, es bleibt ein Überrest, der nur einen Bruchteil der Ausgangsmasse des Sterns besitzt.

Im Januar 2005, leuchtete eine schwache Supernova (SN 2005E) im Halo der benachbarten Galaxie NGC 1032 auf, und ein internationales Astronomenteam sammelte Beobachtungsdaten von Teleskopen rund um den Erdball. Erstaunlicherweise passten die Messungen der chemischen Zusammensetzung und der Menge der herausgeschleuderten Sternmaterie zu keinem der beiden bekannten Explosionsmechanismen. In der Umgebung der Supernova deutet nichts auf kürzlich stattfindende Sternentstehung hin und auch die Masse der abgestoßenen Materie ist zu gering (nur etwa ein Drittel der Masse unserer Sonne) für die Explosion eines Riesensterns; d.h. diese Supernova kann nicht durch das Kernkollaps-Szenario erklärt werden. Die Alternative, ein explodierender, alter Weißer Zwergstern, der eine lange Zeit vom Ort seiner Entstehung bis in die Außenbereiche unterwegs war, passt aber auch nicht zu den Beobachtungen, da das Lichtspektrum auf eine andere chemische Zusammensetzung hinweist. Die bei der Supernova SN 2005E herausgeschleuderte Materie enthält einen größeren Anteil an Kalzium und Titan, als je bei einer Supernova beobachtet wurde. Diese Elemente entstehen in Kernreaktionen, die auf Helium basieren – nicht auf Kohlenstoff und Sauerstoff, woraus das Innere von Weißen Zwergen besteht.

Neue Computermodelle zeigen nun, dass die Supernova wahrscheinlich in einem System aus zwei sich eng umkreisenden Weißen Zwergen entstand, wobei die Heliumhülle des einen Sterns vom anderen angesaugt wird. „Sobald sich eine gewisse Menge angesammelt hat, beginnt das Helium auf dem Empfängerstern explosionsartig zu brennen“, sagt Paolo Mazzali (Max-Planck-Insitut für Astrophysik), der die Berechnungen zusammen mit David Arnett (Universität von Arizona) durchführte. „Die einzigartigen Prozesse, die in diesen Explosionen gewisse chemische Elemente erzeugen, könnten einige der Rätsel in Bezug auf die Anreicherung mit chemischen Elementen in unserem Universum lösen. Zum Beispiel könnte dies die Hauptquelle von Titan sein.“

Die Supernova SN 2005E ist wahrscheinlich nicht die einzige schwache Supernova, die durch diesen neuen Art von Explosionen erklärt werden kann. Mehrere ähnliche Supernovae wurden in elliptischen Galaxien gefunden und auch deren Lichtkurven, Umgebung und Materie-Auswurf werden am besten durch eine Helium-Detonation beschrieben.

„Als wie SN 2005 E beobachteten, wurde uns schnell klar, dass wir eine neue Art von Supernova sehen“, sagt Hagai Perets (Weizmann Institut, jetzt am Center for Astrophysics, Universität Harvard), der die Beobachtungen leitete. „Da diese Supernovae relativ lichtschwach sind, können wir sie nur schwer nachweisen. Aber wenn sie in Wirklichkeit gar nicht so selten sind, dann könnten sie uns Antworten auf einige der fundamentalen Rätsel über die Erzeugung der chemischen Elemente im Universum liefern.“

Außergewöhnliche Supernovae sind eine Spezialität dieses Astronomenteams. Vor wenigen Monaten berichteten sie über die erste bestätigte Beobachtung einer anderen, sehr auffälligen Supernova. Diese Art von Explosionen hinterlässt gar keinen Überrest. Je nach Masse beenden Sterne ihr Leben entweder als Weiße Zwerge, als Neutronensterne oder Schwarze Löcher. Extrem massereiche Sterne allerdings können vollständig in der Supernova-Explosion am Ende ihrer Lebendauer zerstört werden. In diesen so-genannten Paar-Instabilitäts-Supernovae werden energiereiche Lichtteilchen in Elektron-Positron-Paare umgewandelt, die den gravitativen Kollaps nicht aufhalten können. Die gewaltige Kontraktion bewirkt eine Explosion des Kerns, die den gesamten Stern vollständig auseinander reißt. Die Astronomen identifizierten erstmals eine derartige Supernova, SN 2007bi, in einer benachbarten Zwerggalaxie und veröffentlichten ihre Ergebnisse im Dezember 2009 in der renommierten Zeitschrift Nature.

Originalveröffentlichungen

H.B. Perets, A. Gal-Yam, P. Mazzali et al., A new type of stellar explosion from a helium rich progenitor, Nature, 20 May 2010

A. Gal-Yam, P. Mazzali, E. O. Ofek, et al., Supernova 2007bi was a pair-instability supernova explosion, Nature, Vol. 462, p. 624-627, 3 December 2009

Kontakt
Dr. Hannelore Hämmerle
Pressesprecherin
Max Planck Institute for Astrophysics
Phone: +49 89 30000-3980
E-Mail: hhaemmerle@mpa-garching.mpg.de
Dr. Paolo Mazzali
Max Planck Institute for Astrophysics
Scuola Normale Superiore and INAF Observatory, Italy
Phone: +49 89 30000-2221
E-Mail: pmazzali@mpa-garching.mpg.de

Dr. Hannelore Hämmerle | Max Planck Institute for Astroph
Weitere Informationen:
http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news1005_mazzali/news1005_mazzali-de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie