Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Springende Atome beobachtet

14.09.2009
Unter Beobachtung: Rastlose Atome lassen Werkstoffe altern

Atome haben die Angewohnheit, durch Festkörper zu springen - das konnten PhysikerInnen jetzt erstmals mit einer neuen Methode beobachten. Möglich war dies durch die Nutzung von Röntgenquellen neuester Bauart, sogenannter Elektronen-Synchrotrons.

Die Details des vom Wissenschaftsfonds FWF unterstützten Projektes wurden kürzlich im renommierten Fachmagazin NATURE MATERIALS veröffentlicht. Die vorliegende Arbeit eröffnet neue Wege für die Erforschung der Alterungsprozesse von Werkstoffen auf atomarer Ebene.

In Festkörpern geht es mitunter "wild" zu. So wechseln beispielsweise in einem Goldring pro Sekunde bisweilen Milliarden von Atomen ihre Position.

Das häufige Herumspringen der Atome spielt sich dabei nicht nur für Laien im Verborgenen ab. Auch den PhysikerInnen entzog sich dieser Vorgang lange der tatsächlichen Beobachtung. Genug Ansporn, dies zu ändern, hatten die WissenschafterInnen aber auf jeden Fall: Denn die Ruhelosigkeit der Atome ist für das Altern - und damit den Verlust bestimmter Eigenschaften von Werkstoffen verantwortlich.

Das Wissen um die Bewegung der Atome hat sich nun entscheidend vertieft: Ein Forscherteam der Fakultät für Physik an der Universität Wien konnte die Atome erstmals beim Springen durch einen Festkörper direkt verfolgen.
Modernste Technologie in Form des europäischen Elektronen-Synchrotrons ESRF in Grenoble, Frankreich, das die Erzeugung spezieller Röntgenstrahlen von extrem hoher Intensität und Qualität ermöglicht, war dazu notwendig. Diese Röntgenstrahlen - die derzeit weltweit in nur drei Forschungsanlagen produziert werden können - ermöglichten den ForscherInnen die Beobachtung der Wanderung der Atome in einer Kupfer-Gold-Legierung.

SPRUNGRATE VERDOPPELT
Im Detail fanden die WissenschafterInnen heraus, wie weit und in welche Richtung die Atome springen, und wie dies durch die Temperatur beeinflusst wird. Projektmitarbeiter Mag. Michael Leitner dazu: "Unsere Untersuchungen haben gezeigt, dass Atome bei einer Temperatur von 270 Grad Celsius etwa einmal in der Stunde ihren Platz im Kristallgitter wechseln. Aber nicht nur

das: Denn steigert man die Temperatur um 10 Grad Celsius, so verdoppelt sich die Sprungrate der Atome. Umgekehrt funktioniert das Ganze natürlich genauso. Wird es um 10 Grad kühler, dann springen die Atome nur halb so oft."

Auf der Grundlage des nun durchgeführten Experiments soll in Zukunft auch die Messung atomarer Bewegung in vielen, auch technisch wichtigen metallischen Systemen möglich sein. Damit ist die Basis geschaffen, um Alterungsprozesse von Werkstoffen verstehen zu können, die von der inneren Unruhe der Atome maßgeblich beeinflusst werden: So beruht beispielweise die Festigkeit von Automotoren oder die Funktionsweise von Computern darauf, dass deren Fremdatomen unter kontrollierten Produktionsbedingungen bei zumeist hohen Temperaturen ein bestimmter Platz zugewiesen wird. Leider tendieren die Atome aber auch dazu, bei hohen Temperaturen schnell wieder die ihnen "zugewiesenen" Plätze zu verlassen - und die Werkstoffe verlieren ihre erwünschten Eigenschaften.

DER WEG IST DAS ZIEL
Abgesehen von den Erkenntnissen des Experiments rund um die springenden Atome ist auch dessen Realisierung spektakulär. Denn erst durch den ausgeklügelten Einsatz verschiedener Filter konnten dem Synchrotron spezielle, als "kohärent" bezeichnete, Röntgenstrahlen entlockt werden.
Allein dies bedeutet bereits einen enormen Fortschritt für das Forschungsgebiet des Wiener Physikerteams. Mag. Leitner dazu: "Derzeit wird daran gearbeitet, die Qualität der Röntgenstrahlen noch weiter zu erhöhen.

So wird beispielsweise gerade in Hamburg der europäische Röntgenlaser XFEL gebaut. Dieser Laser wird wieder neue Möglichkeiten bieten, auf die wir uns bereits freuen."

Der geplante Einsatzbereich des europäischen Röntgenlasers geht dabei über die Untersuchung diverser Materialien weit hinaus. So soll er auch für die Aufklärung von Strukturen lebenswichtiger Substanzen, wie etwa von Proteinen, herangezogen werden können. Noch steckt die Nutzung der "kohärenten" Röntgenstrahlen in den Kinderschuhen - das vom FWF unterstützte Projekt ist jedoch bereits ein erster, wichtiger Schritt hin zu deren universeller Anwendung unter führender Teilnahme österreichischer WissenschafterInnen.


Bild und Text ab Montag, 14. September 2009, 09.00 Uhr MEZ verfügbar unter:
http://www.fwf.ac.at/de/public_relations/press/pv200909-de.html

Originalpublikation: "Atomic diffusion studied with coherent X-rays" M.
Leitner, B. Sepiol, L. Stadler, B. Pfau & G. Vogl. Nature Materials 8, 717­720 (2009), DOI: 10.1038/nmat2506

Wissenschaftlicher Kontakt:
Mag. Michael Leitner
Universität Wien
Fakultät für Physik
Strudlhofgasse 4
1090 Wien
T +43 / 1 / 42 77 - 513 10
E michael.leitner@univie.ac.at
Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Redaktion & Aussendung:
PR&D - Public Relations für Forschung & Bildung Campus Vienna Biocenter 2 1030 Wien T +43 / 1 / 505 70 44 E contact@prd.at

Ramona Seba | PR&D
Weitere Informationen:
http://www.fwf.ac.at
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie