Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spinströme: Riesengroß und ultraschnell

23.05.2016

Mit einer neuen Methode der TU Wien lassen sich extrem starke Spinströme herstellen. Sie sind wichtig für die Spintronik, die unsere herkömmliche Elektronik ablösen könnte.

In unseren Computerchips wird Information in Form von elektrischer Ladung übertragen. Elektronen oder andere Ladungsträger werden von einem Ort zum anderen transportiert. Seit Jahren forscht man an Bauteilen, die statt mit der Ladung der Elektronen mit ihrem Drehimpuls, dem Spin, arbeiten. Gegenüber der herkömmlichen Elektronik hat diese neue Herangehensweise, die „Spintronik“, große Vorteile, sie kann mit viel weniger Energie auskommen.


Der Laserpuls trifft auf Nickel (grün). Elektronen, deren Spin nach oben zeigt (rot) wechseln in das Silizium (gelb). Aus dem Silizium wechseln Elektronen beider Spinrichtungen zurück.

TU Wien

Allerdings ist es schwierig, überhaupt einen Spinstrom ohne Ladungsstrom zu erzeugen, wie man ihn in der Spintronik benötigt. Physiker der TU Wien schlagen nun im Fachjournal „Physical Review Letters“ eine neue Methode vor, die in extrem kurzer Zeit gewaltige Spinströme produziert. Der Trick liegt in der Verwendung ultrakurzer Laserpulse.

Der Magnet auf dem Halbleiter

Der Spin eines Elektrons kann zwei verschiedene Zustände annehmen – man spricht von „Spin nach oben“ und „Spin nach unten“. Dieser Elektronenspin ist auch für den Ferromagnetismus verantwortlich. Wenn sich viele Elektronenspins in einem Metall in dieselbe Richtung ausrichten, dann entsteht ein Magnetfeld. Daher ist es naheliegend, auch für die Erzeugung von Spinströmen Ferromagneten zu verwenden.

„Es gibt Versuche, Magneten mit Halbleitern zu kombinieren und einfach einen Strom durchzuleiten“, sagt Marco Battiato vom Institut für Festkörperphysik der TU Wien. „Man will auf diese Weise einen Strom von Elektronen mit möglichst einheitlichem Spin erzeugen, den man dann für Spintronik-Schaltungen verwenden könnte. Doch die Effizienz ist sehr gering.“

Marco Battiato und Karsten Held forschten an der TU Wien an einem anderen Weg: Sie simulierten am Computer, wie sich die Elektronen verhalten, wenn man eine dünne Schicht Nickel auf einem Stück Silizium aufbringt und dann mit starken ultrakurzen Laserpulsen beschießt. „Ein solcher Laserpuls hat eine gewaltige Wirkung auf die Elektronen im Nickel“, erklärt Prof. Karsten Held. Sie werden mit ungeheurer Wucht von ihren Plätzen gefegt und bewegen sich Richtung Silizium.

An der Grenze zwischen Nickel und Silizium, entsteht dadurch sehr rasch ein elektrisches Feld, der elektrische Ladungs-Strom hört daher auf zu fließen. Elektronen wandern zwar weiterhin zwischen Nickel und Silizium hin und her, aber dies gleicht sich aus, insgesamt findet kein Ladungstransport mehr statt.

Spin nach oben und Spin nach unten

Doch auch wenn keine elektrische Ladung mehr transportiert wird, kann immer noch Spin transportiert werden. „Im Nickel bewegen sich zunächst sowohl Elektronen mit Spin nach oben wie auch Elektronen mit Spin nach unten“, sagt Karsten Held. „Allerdings haben die Atome des Metalls auf diese beiden Sorten von Elektronen eine unterschiedliche Wirkung. Die Elektronen mit Spin nach oben können sich recht ungehindert bewegen. Die Elektronen mit Spin nach unten haben eine viel größere Wahrscheinlichkeit, an Nickel-Atomen gestreut zu werden.“

Wenn die Elektronen gestreut werden, dann ändern sie ihre Richtung und verlieren Energie. Die Elektronen, die auf geradem Weg mit hoher Energie zur Grenzschicht zwischen Nickel und Silizium gelangen, haben daher in großer Mehrheit Spin nach oben. Elektronen, die den entgegengesetzten Weg nehmen, nehmen hingegen beide Spin-Möglichkeiten mit ähnlicher Wahrscheinlichkeit an.

Dieser spinabhängige Unterschied führt dazu, dass schließlich im Silizium Spin-nach-oben dominiert. Es ist gelungen, in den Halbleiter Silizium einen Spinstrom ohne Ladungsstrom zu injizieren. „Unsere Berechnungen zeigen, dass diese Spin-Polarisierung extrem stark ist – viel stärker als man sie mit anderen Methoden erreichen könnte“, sagt Marco Battiato.

„Außerdem lässt sich dieser Spinstrom innerhalb von Femtosekunden erzeugen.“ Geschwindigkeit ist wichtig: Unsere modernen Prozessoren arbeiten mit Taktfrequenzen im Gigahertz-Bereich, somit sind Milliarden Rechenoperationen pro Sekunde möglich. Will man das steigern und in den Terahertz-Bereich vordringen, braucht man Bauteile, die auf entsprechend kurzen Zeitskalen reagieren können.

Bisher gibt es die neue Methode nur in der Computersimulation, doch Battiato und Held stehen bereits in Kontakt mit anderen Forschungsgruppen, die den Laser-getriggerten Spinfluss experimentell messen wollen. „Die Spintronik hat gute Chancen, eine Schlüsseltechnologie der nächsten Jahrzehnte zu werden“, sagt Battiato. „Mit unserer Spin-Injektionsmethode hat man nun erstmals die Möglichkeit, ultraschnelle, extrem starke Spinströme herzustellen.“

Originalpublikation:
M. Battiato and K. Held, Phys. Rev. Lett. 116, 196601, DOI: 10.1103/PhysRevLett.116.196601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.196601

Rückfragehinweise:

Prof. Karsten Held
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13710
karsten.held@tuwien.ac.at

Dr. Marco Battiato
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13768
marco.battiato@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie