Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spinströme: Riesengroß und ultraschnell

23.05.2016

Mit einer neuen Methode der TU Wien lassen sich extrem starke Spinströme herstellen. Sie sind wichtig für die Spintronik, die unsere herkömmliche Elektronik ablösen könnte.

In unseren Computerchips wird Information in Form von elektrischer Ladung übertragen. Elektronen oder andere Ladungsträger werden von einem Ort zum anderen transportiert. Seit Jahren forscht man an Bauteilen, die statt mit der Ladung der Elektronen mit ihrem Drehimpuls, dem Spin, arbeiten. Gegenüber der herkömmlichen Elektronik hat diese neue Herangehensweise, die „Spintronik“, große Vorteile, sie kann mit viel weniger Energie auskommen.


Der Laserpuls trifft auf Nickel (grün). Elektronen, deren Spin nach oben zeigt (rot) wechseln in das Silizium (gelb). Aus dem Silizium wechseln Elektronen beider Spinrichtungen zurück.

TU Wien

Allerdings ist es schwierig, überhaupt einen Spinstrom ohne Ladungsstrom zu erzeugen, wie man ihn in der Spintronik benötigt. Physiker der TU Wien schlagen nun im Fachjournal „Physical Review Letters“ eine neue Methode vor, die in extrem kurzer Zeit gewaltige Spinströme produziert. Der Trick liegt in der Verwendung ultrakurzer Laserpulse.

Der Magnet auf dem Halbleiter

Der Spin eines Elektrons kann zwei verschiedene Zustände annehmen – man spricht von „Spin nach oben“ und „Spin nach unten“. Dieser Elektronenspin ist auch für den Ferromagnetismus verantwortlich. Wenn sich viele Elektronenspins in einem Metall in dieselbe Richtung ausrichten, dann entsteht ein Magnetfeld. Daher ist es naheliegend, auch für die Erzeugung von Spinströmen Ferromagneten zu verwenden.

„Es gibt Versuche, Magneten mit Halbleitern zu kombinieren und einfach einen Strom durchzuleiten“, sagt Marco Battiato vom Institut für Festkörperphysik der TU Wien. „Man will auf diese Weise einen Strom von Elektronen mit möglichst einheitlichem Spin erzeugen, den man dann für Spintronik-Schaltungen verwenden könnte. Doch die Effizienz ist sehr gering.“

Marco Battiato und Karsten Held forschten an der TU Wien an einem anderen Weg: Sie simulierten am Computer, wie sich die Elektronen verhalten, wenn man eine dünne Schicht Nickel auf einem Stück Silizium aufbringt und dann mit starken ultrakurzen Laserpulsen beschießt. „Ein solcher Laserpuls hat eine gewaltige Wirkung auf die Elektronen im Nickel“, erklärt Prof. Karsten Held. Sie werden mit ungeheurer Wucht von ihren Plätzen gefegt und bewegen sich Richtung Silizium.

An der Grenze zwischen Nickel und Silizium, entsteht dadurch sehr rasch ein elektrisches Feld, der elektrische Ladungs-Strom hört daher auf zu fließen. Elektronen wandern zwar weiterhin zwischen Nickel und Silizium hin und her, aber dies gleicht sich aus, insgesamt findet kein Ladungstransport mehr statt.

Spin nach oben und Spin nach unten

Doch auch wenn keine elektrische Ladung mehr transportiert wird, kann immer noch Spin transportiert werden. „Im Nickel bewegen sich zunächst sowohl Elektronen mit Spin nach oben wie auch Elektronen mit Spin nach unten“, sagt Karsten Held. „Allerdings haben die Atome des Metalls auf diese beiden Sorten von Elektronen eine unterschiedliche Wirkung. Die Elektronen mit Spin nach oben können sich recht ungehindert bewegen. Die Elektronen mit Spin nach unten haben eine viel größere Wahrscheinlichkeit, an Nickel-Atomen gestreut zu werden.“

Wenn die Elektronen gestreut werden, dann ändern sie ihre Richtung und verlieren Energie. Die Elektronen, die auf geradem Weg mit hoher Energie zur Grenzschicht zwischen Nickel und Silizium gelangen, haben daher in großer Mehrheit Spin nach oben. Elektronen, die den entgegengesetzten Weg nehmen, nehmen hingegen beide Spin-Möglichkeiten mit ähnlicher Wahrscheinlichkeit an.

Dieser spinabhängige Unterschied führt dazu, dass schließlich im Silizium Spin-nach-oben dominiert. Es ist gelungen, in den Halbleiter Silizium einen Spinstrom ohne Ladungsstrom zu injizieren. „Unsere Berechnungen zeigen, dass diese Spin-Polarisierung extrem stark ist – viel stärker als man sie mit anderen Methoden erreichen könnte“, sagt Marco Battiato.

„Außerdem lässt sich dieser Spinstrom innerhalb von Femtosekunden erzeugen.“ Geschwindigkeit ist wichtig: Unsere modernen Prozessoren arbeiten mit Taktfrequenzen im Gigahertz-Bereich, somit sind Milliarden Rechenoperationen pro Sekunde möglich. Will man das steigern und in den Terahertz-Bereich vordringen, braucht man Bauteile, die auf entsprechend kurzen Zeitskalen reagieren können.

Bisher gibt es die neue Methode nur in der Computersimulation, doch Battiato und Held stehen bereits in Kontakt mit anderen Forschungsgruppen, die den Laser-getriggerten Spinfluss experimentell messen wollen. „Die Spintronik hat gute Chancen, eine Schlüsseltechnologie der nächsten Jahrzehnte zu werden“, sagt Battiato. „Mit unserer Spin-Injektionsmethode hat man nun erstmals die Möglichkeit, ultraschnelle, extrem starke Spinströme herzustellen.“

Originalpublikation:
M. Battiato and K. Held, Phys. Rev. Lett. 116, 196601, DOI: 10.1103/PhysRevLett.116.196601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.196601

Rückfragehinweise:

Prof. Karsten Held
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13710
karsten.held@tuwien.ac.at

Dr. Marco Battiato
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13768
marco.battiato@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops