Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spin-Tanz im Terahertz-Takt

23.11.2010
Konstanzer Physiker an neuem Verfahren zur Kontrolle des Elektronenspins beteiligt

Physikern einer europäischen Forschungskooperation – darunter Forscher der Universität Konstanz – ist es gelungen, die Bewegung kleinster Elementarmagnete, die so genannten „Spins“ von Elektronen, mit bisher unerreichter Geschwindigkeit und Präzision zu kontrollieren.

Dieses neue Verfahren könnte langfristig die Datenspeicher der Zukunft deutlich kompakter und schneller werden lassen. Möglich wird das Verfahren durch Terahertz-Impulse – Laserlichtblitze, deren Magnetfeldkomponente direkt auf die Spins einwirkt. In der aktuellen Ausgabe des Wissenschaftsjournals „Nature Photonics“ stellen die Forscher ihre Erkenntnisse vor.

Der Elektronenspin kann als Pirouette des Elementarteilchens um die eigene Achse verstanden werden. Da diese Bewegung mit einem elektrischen Stromfluss einhergeht, weist das Elektron magnetische Eigenschaften wie eine winzige Kompassnadel auf. In Computerfestplatten summiert sich eine astronomische Anzahl dieser Spins zu einem messbaren magnetischen Signal und repräsentiert je nach Orientierung den Binärwert „0“ oder „1“, also ein einzelnes Bit.

Ähnlich wie eine Kompassnadel durch das Erdmagnetfeld ausgerichtet wird, kann nun die Orientierung der Spins anhand von Magnetfeldern manipuliert werden. Dazu werden in einer Festplatte einfache Spulen verwendet. Diese sind aber nicht beliebig schnell schaltbar und beschränken damit die Lese- und Schreibgeschwindigkeit.

Wissenschaftler der Universität Konstanz, der Universität Bonn, des Instituts für Atom- und Molekularphysik in Amsterdam und des Fritz Haber-Instituts in Berlin haben nun eine Möglichkeit gefunden, die Bewegungen der Spins mithilfe der Magnetfelder von Laserimpulsen deutlich schneller und präziser zu kontrollieren. Die Forscher setzen eine hochintensive Lichtquelle ein, die jüngst am Konstanzer Centrum für Angewandte Photonik (CAP) entwickelt wurde, um starke Magnetimpulse im Terahertzbereich zu erzeugen. Die Terahertz-Impulse sind derart kurz, dass sie nur aus einer einzelnen Lichtschwingung bestehen.

Das magnetische Feld wird dabei so groß, dass es im Experiment mit Nickeloxid die Elektronen aus ihren ursprünglichen Drehrichtungen stößt. Dadurch geraten die mikroskopischen Magnete wie kleine Kreisel ins Schlingern. Diese Bewegung vollzieht sich unvorstellbar schnell mit dem millionfachen einer Million Umdrehungen pro Sekunde – dies ist um den Faktor 1000 schneller als die Ergebnisse mit bisher üblichen Spulen.

Den Forschern ist es gelungen, diese Schwingungen mit einer extremen Zeitlupenkamera in Echtzeit zu verfolgen. Darüber hinaus können sie sogar gezielt in das atomare Geschehen eingreifen: Beispielsweise können sie die zuvor angestoßene Präzession der Spins mit einem maßgeschneiderten Laserimpuls abrupt innerhalb von nur einer billionstel Sekunde stoppen.

Neben möglichen technischen Anwendungen betonen die Wissenschaftler vor allem die Bedeutung ihrer Experimente für die Grundlagenforschung. So lassen sich mit der neuen Technik Spins auf kürzesten Zeitskalen und in praktisch allen Materialien erforschen, die für Terahertz-Strahlung durchlässig sind.

Originalpublikation:
T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, A. Leitenstorfer und R. Huber, „Coherent terahertz control of antiferromagnetic spin waves“, Nature Photonics, DOI 10.1038-NPHOTON.2010.259 (2010).
Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon 07531 / 88-3603
E-Mail: kum@uni-konstanz.de
Dr. Tobias Kampfrath
Fritz Haber-Institut Berlin
Department of Physical Chemistry
E-Mail: kampfrath@fhi-berlin.mpg.de
Dr. Alexander Sell
Universität Konstanz
Fachbereich Physik
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 / 88-3840
E-Mail: Alexander.Sell@uni-konstanz.de
Prof. Dr. Thomas Dekorsy
Universität Konstanz
Moderne Optik und Photonik
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 / 88-3820
E-Mail: Thomas.Dekorsy@uni-konstanz.de
Prof. Dr. Rupert Huber
Universität Konstanz
Fachbereich Physik
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 / 88-4680
E-Mail: Rupert.Huber@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.uni-konstanz.de
http://www.pi.uni-konstanz.de/2010/elektronenspin.jpg

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie