Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spin-Ströme in topologischem Isolator

04.06.2012
Wieder sorgen Würzburger Physiker für neue Erkenntnisse in der Spintronik: In extrem dünnen topologischen Isolatoren haben sie spin-polarisierte Ströme nachgewiesen, welche die Theorie seit sechs Jahren vorhersagt. Zugleich zeigen sie einen Weg der Anwendung für neuartige Rechner.

Elektronen haben einen inneren Drehimpuls, Spin genannt. Dadurch sind sie nicht nur Ladungen, sondern auch kleine Magnete, die sich ausrichten lassen. Beim alltäglichen Einsatz von Computern sind jedoch so viele Elektronen-Magnete zufällig in alle Richtungen ausgerichtet, dass sie sich am Ende gegenseitig auslöschen.


Die Randströme eines topologischen Isolators dienen als Quelle für spin-polarisierte Elektronen. Grafik: Luis Maier


Elektronenmikroskopische Aufnahme des Schaltkreises. In Rot das Halbleiter-H, in Gelb die Gate-Kontakte. Das Bild zeigt einen Ausschnitt von etwa drei auf drei Mikrometer. Foto: Luis Maier

Ließe sich der Spin aber kontrollieren, so könnten konventionelle Rechner auf einen Schlag viel schneller werden: Bei der so genannten Spintronik wird die magnetische Ausrichtung der Elektronen zur Informationsübertragung genutzt, und das erzeugt viel weniger Wärme, als das bisher nötige ständige An- und Ausschalten des Stroms.

Metall und Isolator gleichzeitig: Topologische Isolatoren

Eine viel versprechende Materialklasse für die Realisierung spintronischer Bauelemente sind die topologischen Isolatoren. Sie leiten nur an ihrer Oberfläche Strom, nicht jedoch im Inneren. In dünnen Schichten einiger dieser Materialien besteht der Randstrom aus genau zwei Kanälen, in denen sich einzelne Elektronen bewegen. Die Flussrichtung in den beiden Kanälen ist entgegengesetzt, genau wie die Spin-Ausrichtung. Dieses Verhalten nennt man den Quanten-Spin-Hall-Effekt (QSH), in Anlehnung an den Quanten-Hall-Effekt. Entdeckt wurde der QSH-Effekt 2007 in der Arbeitsgruppe von Professor Laurens Molenkamp an der Universität Würzburg.

Physiker aus dem Lehrstuhl von Laurens Molenkamp und der Arbeitsgruppe von Professorin Ewelina Hankiewicz zeigen jetzt mit Forschern der Stanford University aus Kalifornien, wie sich die Spin-Polarisation der Kanäle experimentell nachweisen lässt. Gleichzeitig stellen sie ein elektrisches Bauteil vor, das spin-polarisierte Ströme erzeugen und messen kann. Damit besitzt es grundlegende Fähigkeiten, die für die Spintronik nötig sind. Diese Ergebnisse sind in der renommierten Zeitschrift „Nature Physics“ veröffentlicht.

Von der Theorie zum Experiment: Mit einem Nano-H zum Erfolg

Bis vor kurzem war die Spin-Polarisation der Kanäle nur mathematisch beschrieben; experimentell konnte nur indirekt auf sie geschlossen werden. „Der Quanten-Spin-Hall-Effekt kann aber nur unter der Voraussetzung existieren, dass wir tatsächlich einen spin-polarisierten Transport haben“, sagt Arbeitsgruppenleiter Hartmut Buhmann aus dem Lehrstuhl Molenkamp.

Dem Würzburger Physiker Christoph Brüne gelang der experimentelle Nachweis nun mit einem geschickten Versuchsaufbau. Den Erfolg brachte eine Nanostruktur in Form eines H. Sie besteht aus Quecksilber-Tellurid und besitzt an jedem Arm eine zusätzliche Elektrode aus Gold.

Damit ist es möglich, einen Arm der H-Struktur mit einer angelegten Gate-Spannung in den Quanten-Spin-Hall-Zustand zu versetzen. Der andere Arm sorgt an der Verbindungsstelle, dem Querstrich des H, für ein Ungleichgewicht zwischen den beiden Spin-Strömen. Dadurch können nur Elektronen mit einer magnetischen Ausrichtung extrahiert und gemessen werden. Diese Funktion lässt sich auch umdrehen, so dass man einen spin-polarisierten Strom einspeisen und eine im QSH-Material erzeugte Spannung messen kann.

Herausgeber von „Nature Physics“ heben die Arbeit hervor

Die nötige Theorie, um die Messwerte eindeutig als Spin-Ströme zu identifizieren, stammt zusammen mit aufwändigen Simulationen aus der Gruppe von Ewelina Hankiewicz und ihren Kollegen in der Arbeitsgruppe von Professor Shou-Cheng Zhang in Stanford: „Es war nicht einfach zu berechnen, wie die Spin-Kanten-Ströme in das Metall des zweiten Arms gelangen“, sagt die Professorin.

Doch am Ende wurde die Mühe belohnt: Die Herausgeber von „Nature Physics“ haben der Würzburger Arbeit sogar einen „News & Views“-Übersichtsartikel gewidmet. „Das kommt einer Auszeichnung gleich und stuft unsere Ergebnisse als besonders wichtig ein“, erklärt Laurens Molenkamp.

Nächste Forschungsschritte: Konzept erweitern

Der von den Würzburger Physikern vorgestellte Aufbau funktioniert bislang nur bei extrem tiefen Temperaturen, bei minus 271 Grad Celsius. Um ihn auch bei Raumtemperatur nutzen zu können, müssen erst noch geeignete Materialien gefunden werden. Für die Zukunft planen die Würzburger Forscher zunächst, das Konzept zu einem Spin-Transistor zu erweitern und so alle nötigen Zutaten für eine Anwendung in der Spintronik bereitzustellen.

Topologische Isolatoren bergen noch mehr Potenzial: Sie sind für weitere exotische Entdeckungen gut, wie zum Beispiel Majorana-Fermionen – das sind Teilchen, die gleichzeitig ihr Antiteilchen sind. Kein Wunder also, dass die Deutsche Forschungsgemeinschaft (DFG) in diesem Jahr ein neues Schwerpunktprogramm „Topologische Isolatoren“ einrichten will.

Veröffentlichungen zum Thema

Christoph Brüne, Andreas Roth, Hartmut Buhmann, Ewelina M. Hankiewicz, Laurens W. Molenkamp, Joseph Maciejko, Xiao-Liang Qi & Shou-Cheng Zhang: Spin polarization of the quantum spin Hall edge states; Nature Physics 8, 486–491 (2012), doi:10.1038/nphys2322

Yi Zhou & Fu-Chun Zhang: Quantum spin Hall effect: Left up right down; Nature Physics 8, 448–449 (2012), doi:10.1038/nphys2335

Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi and Shou-Cheng Zhang: Quantum Spin Hall Insulator State in HgTe Quantum Wells; Science 318, 766-770 (2007), doi: 10.1126/science.1148047

Kontakt

Prof. Dr. Laurens Molenkamp, Physikalisches Institut der Universität Würzburg, T (0931) 31-84925, molenkamp@physik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie