Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spin-Ströme in topologischem Isolator

04.06.2012
Wieder sorgen Würzburger Physiker für neue Erkenntnisse in der Spintronik: In extrem dünnen topologischen Isolatoren haben sie spin-polarisierte Ströme nachgewiesen, welche die Theorie seit sechs Jahren vorhersagt. Zugleich zeigen sie einen Weg der Anwendung für neuartige Rechner.

Elektronen haben einen inneren Drehimpuls, Spin genannt. Dadurch sind sie nicht nur Ladungen, sondern auch kleine Magnete, die sich ausrichten lassen. Beim alltäglichen Einsatz von Computern sind jedoch so viele Elektronen-Magnete zufällig in alle Richtungen ausgerichtet, dass sie sich am Ende gegenseitig auslöschen.


Die Randströme eines topologischen Isolators dienen als Quelle für spin-polarisierte Elektronen. Grafik: Luis Maier


Elektronenmikroskopische Aufnahme des Schaltkreises. In Rot das Halbleiter-H, in Gelb die Gate-Kontakte. Das Bild zeigt einen Ausschnitt von etwa drei auf drei Mikrometer. Foto: Luis Maier

Ließe sich der Spin aber kontrollieren, so könnten konventionelle Rechner auf einen Schlag viel schneller werden: Bei der so genannten Spintronik wird die magnetische Ausrichtung der Elektronen zur Informationsübertragung genutzt, und das erzeugt viel weniger Wärme, als das bisher nötige ständige An- und Ausschalten des Stroms.

Metall und Isolator gleichzeitig: Topologische Isolatoren

Eine viel versprechende Materialklasse für die Realisierung spintronischer Bauelemente sind die topologischen Isolatoren. Sie leiten nur an ihrer Oberfläche Strom, nicht jedoch im Inneren. In dünnen Schichten einiger dieser Materialien besteht der Randstrom aus genau zwei Kanälen, in denen sich einzelne Elektronen bewegen. Die Flussrichtung in den beiden Kanälen ist entgegengesetzt, genau wie die Spin-Ausrichtung. Dieses Verhalten nennt man den Quanten-Spin-Hall-Effekt (QSH), in Anlehnung an den Quanten-Hall-Effekt. Entdeckt wurde der QSH-Effekt 2007 in der Arbeitsgruppe von Professor Laurens Molenkamp an der Universität Würzburg.

Physiker aus dem Lehrstuhl von Laurens Molenkamp und der Arbeitsgruppe von Professorin Ewelina Hankiewicz zeigen jetzt mit Forschern der Stanford University aus Kalifornien, wie sich die Spin-Polarisation der Kanäle experimentell nachweisen lässt. Gleichzeitig stellen sie ein elektrisches Bauteil vor, das spin-polarisierte Ströme erzeugen und messen kann. Damit besitzt es grundlegende Fähigkeiten, die für die Spintronik nötig sind. Diese Ergebnisse sind in der renommierten Zeitschrift „Nature Physics“ veröffentlicht.

Von der Theorie zum Experiment: Mit einem Nano-H zum Erfolg

Bis vor kurzem war die Spin-Polarisation der Kanäle nur mathematisch beschrieben; experimentell konnte nur indirekt auf sie geschlossen werden. „Der Quanten-Spin-Hall-Effekt kann aber nur unter der Voraussetzung existieren, dass wir tatsächlich einen spin-polarisierten Transport haben“, sagt Arbeitsgruppenleiter Hartmut Buhmann aus dem Lehrstuhl Molenkamp.

Dem Würzburger Physiker Christoph Brüne gelang der experimentelle Nachweis nun mit einem geschickten Versuchsaufbau. Den Erfolg brachte eine Nanostruktur in Form eines H. Sie besteht aus Quecksilber-Tellurid und besitzt an jedem Arm eine zusätzliche Elektrode aus Gold.

Damit ist es möglich, einen Arm der H-Struktur mit einer angelegten Gate-Spannung in den Quanten-Spin-Hall-Zustand zu versetzen. Der andere Arm sorgt an der Verbindungsstelle, dem Querstrich des H, für ein Ungleichgewicht zwischen den beiden Spin-Strömen. Dadurch können nur Elektronen mit einer magnetischen Ausrichtung extrahiert und gemessen werden. Diese Funktion lässt sich auch umdrehen, so dass man einen spin-polarisierten Strom einspeisen und eine im QSH-Material erzeugte Spannung messen kann.

Herausgeber von „Nature Physics“ heben die Arbeit hervor

Die nötige Theorie, um die Messwerte eindeutig als Spin-Ströme zu identifizieren, stammt zusammen mit aufwändigen Simulationen aus der Gruppe von Ewelina Hankiewicz und ihren Kollegen in der Arbeitsgruppe von Professor Shou-Cheng Zhang in Stanford: „Es war nicht einfach zu berechnen, wie die Spin-Kanten-Ströme in das Metall des zweiten Arms gelangen“, sagt die Professorin.

Doch am Ende wurde die Mühe belohnt: Die Herausgeber von „Nature Physics“ haben der Würzburger Arbeit sogar einen „News & Views“-Übersichtsartikel gewidmet. „Das kommt einer Auszeichnung gleich und stuft unsere Ergebnisse als besonders wichtig ein“, erklärt Laurens Molenkamp.

Nächste Forschungsschritte: Konzept erweitern

Der von den Würzburger Physikern vorgestellte Aufbau funktioniert bislang nur bei extrem tiefen Temperaturen, bei minus 271 Grad Celsius. Um ihn auch bei Raumtemperatur nutzen zu können, müssen erst noch geeignete Materialien gefunden werden. Für die Zukunft planen die Würzburger Forscher zunächst, das Konzept zu einem Spin-Transistor zu erweitern und so alle nötigen Zutaten für eine Anwendung in der Spintronik bereitzustellen.

Topologische Isolatoren bergen noch mehr Potenzial: Sie sind für weitere exotische Entdeckungen gut, wie zum Beispiel Majorana-Fermionen – das sind Teilchen, die gleichzeitig ihr Antiteilchen sind. Kein Wunder also, dass die Deutsche Forschungsgemeinschaft (DFG) in diesem Jahr ein neues Schwerpunktprogramm „Topologische Isolatoren“ einrichten will.

Veröffentlichungen zum Thema

Christoph Brüne, Andreas Roth, Hartmut Buhmann, Ewelina M. Hankiewicz, Laurens W. Molenkamp, Joseph Maciejko, Xiao-Liang Qi & Shou-Cheng Zhang: Spin polarization of the quantum spin Hall edge states; Nature Physics 8, 486–491 (2012), doi:10.1038/nphys2322

Yi Zhou & Fu-Chun Zhang: Quantum spin Hall effect: Left up right down; Nature Physics 8, 448–449 (2012), doi:10.1038/nphys2335

Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi and Shou-Cheng Zhang: Quantum Spin Hall Insulator State in HgTe Quantum Wells; Science 318, 766-770 (2007), doi: 10.1126/science.1148047

Kontakt

Prof. Dr. Laurens Molenkamp, Physikalisches Institut der Universität Würzburg, T (0931) 31-84925, molenkamp@physik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics