Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spin-Ströme in topologischem Isolator

04.06.2012
Wieder sorgen Würzburger Physiker für neue Erkenntnisse in der Spintronik: In extrem dünnen topologischen Isolatoren haben sie spin-polarisierte Ströme nachgewiesen, welche die Theorie seit sechs Jahren vorhersagt. Zugleich zeigen sie einen Weg der Anwendung für neuartige Rechner.

Elektronen haben einen inneren Drehimpuls, Spin genannt. Dadurch sind sie nicht nur Ladungen, sondern auch kleine Magnete, die sich ausrichten lassen. Beim alltäglichen Einsatz von Computern sind jedoch so viele Elektronen-Magnete zufällig in alle Richtungen ausgerichtet, dass sie sich am Ende gegenseitig auslöschen.


Die Randströme eines topologischen Isolators dienen als Quelle für spin-polarisierte Elektronen. Grafik: Luis Maier


Elektronenmikroskopische Aufnahme des Schaltkreises. In Rot das Halbleiter-H, in Gelb die Gate-Kontakte. Das Bild zeigt einen Ausschnitt von etwa drei auf drei Mikrometer. Foto: Luis Maier

Ließe sich der Spin aber kontrollieren, so könnten konventionelle Rechner auf einen Schlag viel schneller werden: Bei der so genannten Spintronik wird die magnetische Ausrichtung der Elektronen zur Informationsübertragung genutzt, und das erzeugt viel weniger Wärme, als das bisher nötige ständige An- und Ausschalten des Stroms.

Metall und Isolator gleichzeitig: Topologische Isolatoren

Eine viel versprechende Materialklasse für die Realisierung spintronischer Bauelemente sind die topologischen Isolatoren. Sie leiten nur an ihrer Oberfläche Strom, nicht jedoch im Inneren. In dünnen Schichten einiger dieser Materialien besteht der Randstrom aus genau zwei Kanälen, in denen sich einzelne Elektronen bewegen. Die Flussrichtung in den beiden Kanälen ist entgegengesetzt, genau wie die Spin-Ausrichtung. Dieses Verhalten nennt man den Quanten-Spin-Hall-Effekt (QSH), in Anlehnung an den Quanten-Hall-Effekt. Entdeckt wurde der QSH-Effekt 2007 in der Arbeitsgruppe von Professor Laurens Molenkamp an der Universität Würzburg.

Physiker aus dem Lehrstuhl von Laurens Molenkamp und der Arbeitsgruppe von Professorin Ewelina Hankiewicz zeigen jetzt mit Forschern der Stanford University aus Kalifornien, wie sich die Spin-Polarisation der Kanäle experimentell nachweisen lässt. Gleichzeitig stellen sie ein elektrisches Bauteil vor, das spin-polarisierte Ströme erzeugen und messen kann. Damit besitzt es grundlegende Fähigkeiten, die für die Spintronik nötig sind. Diese Ergebnisse sind in der renommierten Zeitschrift „Nature Physics“ veröffentlicht.

Von der Theorie zum Experiment: Mit einem Nano-H zum Erfolg

Bis vor kurzem war die Spin-Polarisation der Kanäle nur mathematisch beschrieben; experimentell konnte nur indirekt auf sie geschlossen werden. „Der Quanten-Spin-Hall-Effekt kann aber nur unter der Voraussetzung existieren, dass wir tatsächlich einen spin-polarisierten Transport haben“, sagt Arbeitsgruppenleiter Hartmut Buhmann aus dem Lehrstuhl Molenkamp.

Dem Würzburger Physiker Christoph Brüne gelang der experimentelle Nachweis nun mit einem geschickten Versuchsaufbau. Den Erfolg brachte eine Nanostruktur in Form eines H. Sie besteht aus Quecksilber-Tellurid und besitzt an jedem Arm eine zusätzliche Elektrode aus Gold.

Damit ist es möglich, einen Arm der H-Struktur mit einer angelegten Gate-Spannung in den Quanten-Spin-Hall-Zustand zu versetzen. Der andere Arm sorgt an der Verbindungsstelle, dem Querstrich des H, für ein Ungleichgewicht zwischen den beiden Spin-Strömen. Dadurch können nur Elektronen mit einer magnetischen Ausrichtung extrahiert und gemessen werden. Diese Funktion lässt sich auch umdrehen, so dass man einen spin-polarisierten Strom einspeisen und eine im QSH-Material erzeugte Spannung messen kann.

Herausgeber von „Nature Physics“ heben die Arbeit hervor

Die nötige Theorie, um die Messwerte eindeutig als Spin-Ströme zu identifizieren, stammt zusammen mit aufwändigen Simulationen aus der Gruppe von Ewelina Hankiewicz und ihren Kollegen in der Arbeitsgruppe von Professor Shou-Cheng Zhang in Stanford: „Es war nicht einfach zu berechnen, wie die Spin-Kanten-Ströme in das Metall des zweiten Arms gelangen“, sagt die Professorin.

Doch am Ende wurde die Mühe belohnt: Die Herausgeber von „Nature Physics“ haben der Würzburger Arbeit sogar einen „News & Views“-Übersichtsartikel gewidmet. „Das kommt einer Auszeichnung gleich und stuft unsere Ergebnisse als besonders wichtig ein“, erklärt Laurens Molenkamp.

Nächste Forschungsschritte: Konzept erweitern

Der von den Würzburger Physikern vorgestellte Aufbau funktioniert bislang nur bei extrem tiefen Temperaturen, bei minus 271 Grad Celsius. Um ihn auch bei Raumtemperatur nutzen zu können, müssen erst noch geeignete Materialien gefunden werden. Für die Zukunft planen die Würzburger Forscher zunächst, das Konzept zu einem Spin-Transistor zu erweitern und so alle nötigen Zutaten für eine Anwendung in der Spintronik bereitzustellen.

Topologische Isolatoren bergen noch mehr Potenzial: Sie sind für weitere exotische Entdeckungen gut, wie zum Beispiel Majorana-Fermionen – das sind Teilchen, die gleichzeitig ihr Antiteilchen sind. Kein Wunder also, dass die Deutsche Forschungsgemeinschaft (DFG) in diesem Jahr ein neues Schwerpunktprogramm „Topologische Isolatoren“ einrichten will.

Veröffentlichungen zum Thema

Christoph Brüne, Andreas Roth, Hartmut Buhmann, Ewelina M. Hankiewicz, Laurens W. Molenkamp, Joseph Maciejko, Xiao-Liang Qi & Shou-Cheng Zhang: Spin polarization of the quantum spin Hall edge states; Nature Physics 8, 486–491 (2012), doi:10.1038/nphys2322

Yi Zhou & Fu-Chun Zhang: Quantum spin Hall effect: Left up right down; Nature Physics 8, 448–449 (2012), doi:10.1038/nphys2335

Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi and Shou-Cheng Zhang: Quantum Spin Hall Insulator State in HgTe Quantum Wells; Science 318, 766-770 (2007), doi: 10.1126/science.1148047

Kontakt

Prof. Dr. Laurens Molenkamp, Physikalisches Institut der Universität Würzburg, T (0931) 31-84925, molenkamp@physik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie