Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spin-Ströme in topologischem Isolator

04.06.2012
Wieder sorgen Würzburger Physiker für neue Erkenntnisse in der Spintronik: In extrem dünnen topologischen Isolatoren haben sie spin-polarisierte Ströme nachgewiesen, welche die Theorie seit sechs Jahren vorhersagt. Zugleich zeigen sie einen Weg der Anwendung für neuartige Rechner.

Elektronen haben einen inneren Drehimpuls, Spin genannt. Dadurch sind sie nicht nur Ladungen, sondern auch kleine Magnete, die sich ausrichten lassen. Beim alltäglichen Einsatz von Computern sind jedoch so viele Elektronen-Magnete zufällig in alle Richtungen ausgerichtet, dass sie sich am Ende gegenseitig auslöschen.


Die Randströme eines topologischen Isolators dienen als Quelle für spin-polarisierte Elektronen. Grafik: Luis Maier


Elektronenmikroskopische Aufnahme des Schaltkreises. In Rot das Halbleiter-H, in Gelb die Gate-Kontakte. Das Bild zeigt einen Ausschnitt von etwa drei auf drei Mikrometer. Foto: Luis Maier

Ließe sich der Spin aber kontrollieren, so könnten konventionelle Rechner auf einen Schlag viel schneller werden: Bei der so genannten Spintronik wird die magnetische Ausrichtung der Elektronen zur Informationsübertragung genutzt, und das erzeugt viel weniger Wärme, als das bisher nötige ständige An- und Ausschalten des Stroms.

Metall und Isolator gleichzeitig: Topologische Isolatoren

Eine viel versprechende Materialklasse für die Realisierung spintronischer Bauelemente sind die topologischen Isolatoren. Sie leiten nur an ihrer Oberfläche Strom, nicht jedoch im Inneren. In dünnen Schichten einiger dieser Materialien besteht der Randstrom aus genau zwei Kanälen, in denen sich einzelne Elektronen bewegen. Die Flussrichtung in den beiden Kanälen ist entgegengesetzt, genau wie die Spin-Ausrichtung. Dieses Verhalten nennt man den Quanten-Spin-Hall-Effekt (QSH), in Anlehnung an den Quanten-Hall-Effekt. Entdeckt wurde der QSH-Effekt 2007 in der Arbeitsgruppe von Professor Laurens Molenkamp an der Universität Würzburg.

Physiker aus dem Lehrstuhl von Laurens Molenkamp und der Arbeitsgruppe von Professorin Ewelina Hankiewicz zeigen jetzt mit Forschern der Stanford University aus Kalifornien, wie sich die Spin-Polarisation der Kanäle experimentell nachweisen lässt. Gleichzeitig stellen sie ein elektrisches Bauteil vor, das spin-polarisierte Ströme erzeugen und messen kann. Damit besitzt es grundlegende Fähigkeiten, die für die Spintronik nötig sind. Diese Ergebnisse sind in der renommierten Zeitschrift „Nature Physics“ veröffentlicht.

Von der Theorie zum Experiment: Mit einem Nano-H zum Erfolg

Bis vor kurzem war die Spin-Polarisation der Kanäle nur mathematisch beschrieben; experimentell konnte nur indirekt auf sie geschlossen werden. „Der Quanten-Spin-Hall-Effekt kann aber nur unter der Voraussetzung existieren, dass wir tatsächlich einen spin-polarisierten Transport haben“, sagt Arbeitsgruppenleiter Hartmut Buhmann aus dem Lehrstuhl Molenkamp.

Dem Würzburger Physiker Christoph Brüne gelang der experimentelle Nachweis nun mit einem geschickten Versuchsaufbau. Den Erfolg brachte eine Nanostruktur in Form eines H. Sie besteht aus Quecksilber-Tellurid und besitzt an jedem Arm eine zusätzliche Elektrode aus Gold.

Damit ist es möglich, einen Arm der H-Struktur mit einer angelegten Gate-Spannung in den Quanten-Spin-Hall-Zustand zu versetzen. Der andere Arm sorgt an der Verbindungsstelle, dem Querstrich des H, für ein Ungleichgewicht zwischen den beiden Spin-Strömen. Dadurch können nur Elektronen mit einer magnetischen Ausrichtung extrahiert und gemessen werden. Diese Funktion lässt sich auch umdrehen, so dass man einen spin-polarisierten Strom einspeisen und eine im QSH-Material erzeugte Spannung messen kann.

Herausgeber von „Nature Physics“ heben die Arbeit hervor

Die nötige Theorie, um die Messwerte eindeutig als Spin-Ströme zu identifizieren, stammt zusammen mit aufwändigen Simulationen aus der Gruppe von Ewelina Hankiewicz und ihren Kollegen in der Arbeitsgruppe von Professor Shou-Cheng Zhang in Stanford: „Es war nicht einfach zu berechnen, wie die Spin-Kanten-Ströme in das Metall des zweiten Arms gelangen“, sagt die Professorin.

Doch am Ende wurde die Mühe belohnt: Die Herausgeber von „Nature Physics“ haben der Würzburger Arbeit sogar einen „News & Views“-Übersichtsartikel gewidmet. „Das kommt einer Auszeichnung gleich und stuft unsere Ergebnisse als besonders wichtig ein“, erklärt Laurens Molenkamp.

Nächste Forschungsschritte: Konzept erweitern

Der von den Würzburger Physikern vorgestellte Aufbau funktioniert bislang nur bei extrem tiefen Temperaturen, bei minus 271 Grad Celsius. Um ihn auch bei Raumtemperatur nutzen zu können, müssen erst noch geeignete Materialien gefunden werden. Für die Zukunft planen die Würzburger Forscher zunächst, das Konzept zu einem Spin-Transistor zu erweitern und so alle nötigen Zutaten für eine Anwendung in der Spintronik bereitzustellen.

Topologische Isolatoren bergen noch mehr Potenzial: Sie sind für weitere exotische Entdeckungen gut, wie zum Beispiel Majorana-Fermionen – das sind Teilchen, die gleichzeitig ihr Antiteilchen sind. Kein Wunder also, dass die Deutsche Forschungsgemeinschaft (DFG) in diesem Jahr ein neues Schwerpunktprogramm „Topologische Isolatoren“ einrichten will.

Veröffentlichungen zum Thema

Christoph Brüne, Andreas Roth, Hartmut Buhmann, Ewelina M. Hankiewicz, Laurens W. Molenkamp, Joseph Maciejko, Xiao-Liang Qi & Shou-Cheng Zhang: Spin polarization of the quantum spin Hall edge states; Nature Physics 8, 486–491 (2012), doi:10.1038/nphys2322

Yi Zhou & Fu-Chun Zhang: Quantum spin Hall effect: Left up right down; Nature Physics 8, 448–449 (2012), doi:10.1038/nphys2335

Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi and Shou-Cheng Zhang: Quantum Spin Hall Insulator State in HgTe Quantum Wells; Science 318, 766-770 (2007), doi: 10.1126/science.1148047

Kontakt

Prof. Dr. Laurens Molenkamp, Physikalisches Institut der Universität Würzburg, T (0931) 31-84925, molenkamp@physik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie