Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwingende Elektronenwolke mit Laser abgebildet

27.05.2014

Physiker des Heidelberger Max-Planck-Instituts für Kernphysik haben mit ultraschnellen Laserblitzen die Elektronenbewegung in einem Atom abgelichtet.

Untersucht wurde die Überlagerung zweier Quantenzustände in Argon-Ionen, die sich als schwingende Ladungswolke zeigt. In der Auswertung konnten sie ein direktes Abbild der zeitlichen Entwicklung einer Wellenfunktion mehrerer Elektronen gewinnen. Das Ergebnis zeigt eine gute Übereinstimmung mit Simulationsrechnungen und ist ein Test gängiger Modelle zur Tunnelionisation [Physical Review Letters, 27.05.2014].


Wahrscheinlichkeitsverteilung der Elektronengeschwindigkeit senkrecht zum Laserfeld: Differenz der zeitabhängigen Verteilung zur mittleren Verteilung (rot: negative, grün: positive Abweichung. Grafik: MPIK

Es ist ein alter Wunschtraum vieler Physiker, die Bewegung eines Elektrons in einem Atom möglichst direkt zu vermessen. Dazu muss das Elektron aber aus seinem gebundenen Zustand befreit werden, z. B. durch Beschuss mit geladenen Teilchen (Elektronen oder Ionen) oder Licht. Die Schwierigkeit liegt darin, dass dabei die anfängliche Bewegung gestört wird und diese Störung nicht auf einfache Weise aus dem Messergebnis herausgerechnet werden kann.

Gemäß einem Gedankenexperiment von Heisenberg könnte man die positive Ladung des Atomkerns ausschalten und das negativ geladene Elektron würde einfach mit der Geschwindigkeit, die es in diesem Moment hat, herausfliegen. Freilich müsste man dies vielfach wiederholen, da die Geschwindigkeit im Atom als Quantensystem nicht genau bestimmt ist.

Das Ergebnis wäre dann die gesuchte statistische Geschwindigkeitsverteilung des Elektrons. Anschaulich würde eine Kugel, die in einer Schüssel umherkreist, dadurch befreit, dass man die Schlüssel schlagartig verschwinden lässt. Dies ist aber in der Realität genauso wenig möglich wie das Abschalten der Kernladung. Wohl aber kann man die Schüssel kippen und die Geschwindigkeit der herauslaufenden Kugel vermessen.

Analog geschieht genau das, wenn ein Atom dem starken elektrischen Feld eines intensiven Lasers ausgesetzt wird – das Elektron kann hier nicht nur über den Schüsselrand hinweglaufen, sondern sogar durch diesen hindurch ‚tunneln‘. Physiker aus der Gruppe um Robert Moshammer am Heidelberger Max-Planck-Institut für Kernphysik haben als besonders interessanten Anfangszustand die Überlagerung zweier Orbitale im Edelgas Argon betrachtet.

Die Bindungsenergien in beiden Orbitalen sind ähnlich, sie haben aber eine unterschiedliche Ausrichtung im Raum. Charakterisiert sind sie durch die so genannte magnetische Quantenzahl m, welche hier die Werte -1, 0 oder +1 haben kann. Für m = 0 ist die Elektronenwolke hantelförmig entlang des Laserfeldes ausgerichtet, für m = ±1 dagegen reifenförmig in einer Ebene senkrecht dazu (Abbildung). Präpariert wird diese Überlagerung durch Tunnelionisation in einem ersten Laserimpuls, der genau ein Elektron entfernt – zurück bleibt daher eine Überlagerung zweier ‚Lochzustände‘.

Wird nun das so präparierte Ar+-Ion nach einer bestimmten Verzögerung von einem zweiten Laserimpuls getroffen, so kann eines der fünf verbleibenden Valenz-Elektronen entfernt werden. Diese verhalten sich komplementär zu dem Lochzustand und sind daher auch als eine solche Überlagerung beschreibbar. Misst man die Wahrscheinlichkeit, mit der ein Elektron im zweiten Laserimpuls freigesetzt wird, so schwankt sie periodisch mit der Verzögerungszeit. Dies entspricht genau dem quantenmechanischen Verhalten einer solchen Überlagerung, die zwischen den Orbitalen mit m = 0 und m = ±1 hin- und herpendelt.

Für m = 0 ist das Elektron wegen der Ausrichtung des Orbitals parallel zum elektrischen Feld (der angreifenden Kraft) leichter zu ionisieren und es wird auch bevorzugt in diese Richtung freigesetzt. Die Geschwindigkeiten der Elektronen haben aber auch eine Komponente senkrecht (transversal) zum Laserfeld. Da in dieser Richtung der Laser keine Kraft ausübt, könnte man erwarten, damit einen direkten Zugang zur anfänglichen Geschwindigkeitsverteilung im gebundenen Zustand zu erhalten. Es sind aber zwei Störeffekte zu berücksichtigen: Erstens wird die Tunnelstrecke bei ‚schiefer‘ Durchdringung der Barriere etwas länger. Zweitens stört die stets vorhandene Anziehungskraft des Atomkerns die beobachtete Verteilung.

Um dieses Problem zu umgehen, haben die Forscher folgenden Trick angewandt: Sie bestimmten die Differenz der transversalen Geschwindigkeitsverteilung für einen bestimmten Zeitpunkt zur zeitgemittelten Verteilung. Als Zeitpunkte wählten sie jene, wo sich das Elektron überwiegend im Orbital mit m = 0 bzw. m = ±1 befindet. Im Zustand m = 0 bewegt sich das Elektron vorzugsweise in Richtung des Laserfeldes – die Geschwindigkeiten senkrecht dazu fallen kleiner aus. Die Zustände m = ±1 können als ‚Kreisbewegung‘ in der Ebene senkrecht zum Laserfeld veranschaulicht werden – mit hier entsprechend größerer Geschwindigkeit. Pendelt das Elektron nun zwischen den beiden Zuständen, so beobachtet man abwechselnd in der Differenz ein Defizit bzw. einen Überschuss bei kleineren bzw. größeren Geschwindigkeiten (Abbildung).

„Durch die Differenzbildung fallen die Störeffekte weitgehend heraus, da sie zeitunabhängig sind, während die zeitabhängige Schwingung der Elektronenwolke deutlich sichtbar bleibt“, erläutert Lutz Fechner, Doktorand in der Gruppe von Robert Moshammer. „Somit sind wir in der Lage, mit unseren Messungen gängige theoretische Modelle für die Tunnelionisation zu testen. Wir waren sogar überrascht, wie gut die Übereinstimmung mit einem einfachen theoretischen Modell ist, welches die Störung durch die Kernladung gar nicht berücksichtigt.“ Von zukünftigen Experimenten erwarten die Forscher detaillierte Informationen über den Ionisationsprozess in starken Laserfeldern und über die Dynamik mehrerer gebundener Elektronen.

Originalveröffentlichung:
Strong-field tunneling from a coherent superposition of electronic states
Lutz Fechner, Nicolas Camus, Joachim Ullrich, Thomas Pfeifer and Robert Moshammer
Phys. Rev. Lett. 112, 213001 (2014); DOI: 10.1103/PhysRevLett.112.213001

Kontakt:

Lutz Fechner
MPI für Kernphysik
E-Mail: lutz.fechner@mpi-hd.mpg.de
Tel.: +49 6221 526-429

Dr. Robert Moshammer
MPI für Kernphysik
E-Mail: robert.moshammer@mpi-hd.mpg.de
Tel.: +49 6221 526-461

Dr. Thomas Pfeifer
MPI für Kernphysik
E-Mail: thomas.pfeifer@mpi-hd.mpg.de
Tel.: +49 6221 526-380

Weitere Informationen:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.213001 Originalveröffentlichung
http://www.mpi-hd.mpg.de/ullrich/page.php?tag=laser Gruppe von Robert Moshammer am MPIK

Dr. Bernold Feuerstein | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise