Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwingende Elektronenwolke mit Laser abgebildet

27.05.2014

Physiker des Heidelberger Max-Planck-Instituts für Kernphysik haben mit ultraschnellen Laserblitzen die Elektronenbewegung in einem Atom abgelichtet.

Untersucht wurde die Überlagerung zweier Quantenzustände in Argon-Ionen, die sich als schwingende Ladungswolke zeigt. In der Auswertung konnten sie ein direktes Abbild der zeitlichen Entwicklung einer Wellenfunktion mehrerer Elektronen gewinnen. Das Ergebnis zeigt eine gute Übereinstimmung mit Simulationsrechnungen und ist ein Test gängiger Modelle zur Tunnelionisation [Physical Review Letters, 27.05.2014].


Wahrscheinlichkeitsverteilung der Elektronengeschwindigkeit senkrecht zum Laserfeld: Differenz der zeitabhängigen Verteilung zur mittleren Verteilung (rot: negative, grün: positive Abweichung. Grafik: MPIK

Es ist ein alter Wunschtraum vieler Physiker, die Bewegung eines Elektrons in einem Atom möglichst direkt zu vermessen. Dazu muss das Elektron aber aus seinem gebundenen Zustand befreit werden, z. B. durch Beschuss mit geladenen Teilchen (Elektronen oder Ionen) oder Licht. Die Schwierigkeit liegt darin, dass dabei die anfängliche Bewegung gestört wird und diese Störung nicht auf einfache Weise aus dem Messergebnis herausgerechnet werden kann.

Gemäß einem Gedankenexperiment von Heisenberg könnte man die positive Ladung des Atomkerns ausschalten und das negativ geladene Elektron würde einfach mit der Geschwindigkeit, die es in diesem Moment hat, herausfliegen. Freilich müsste man dies vielfach wiederholen, da die Geschwindigkeit im Atom als Quantensystem nicht genau bestimmt ist.

Das Ergebnis wäre dann die gesuchte statistische Geschwindigkeitsverteilung des Elektrons. Anschaulich würde eine Kugel, die in einer Schüssel umherkreist, dadurch befreit, dass man die Schlüssel schlagartig verschwinden lässt. Dies ist aber in der Realität genauso wenig möglich wie das Abschalten der Kernladung. Wohl aber kann man die Schüssel kippen und die Geschwindigkeit der herauslaufenden Kugel vermessen.

Analog geschieht genau das, wenn ein Atom dem starken elektrischen Feld eines intensiven Lasers ausgesetzt wird – das Elektron kann hier nicht nur über den Schüsselrand hinweglaufen, sondern sogar durch diesen hindurch ‚tunneln‘. Physiker aus der Gruppe um Robert Moshammer am Heidelberger Max-Planck-Institut für Kernphysik haben als besonders interessanten Anfangszustand die Überlagerung zweier Orbitale im Edelgas Argon betrachtet.

Die Bindungsenergien in beiden Orbitalen sind ähnlich, sie haben aber eine unterschiedliche Ausrichtung im Raum. Charakterisiert sind sie durch die so genannte magnetische Quantenzahl m, welche hier die Werte -1, 0 oder +1 haben kann. Für m = 0 ist die Elektronenwolke hantelförmig entlang des Laserfeldes ausgerichtet, für m = ±1 dagegen reifenförmig in einer Ebene senkrecht dazu (Abbildung). Präpariert wird diese Überlagerung durch Tunnelionisation in einem ersten Laserimpuls, der genau ein Elektron entfernt – zurück bleibt daher eine Überlagerung zweier ‚Lochzustände‘.

Wird nun das so präparierte Ar+-Ion nach einer bestimmten Verzögerung von einem zweiten Laserimpuls getroffen, so kann eines der fünf verbleibenden Valenz-Elektronen entfernt werden. Diese verhalten sich komplementär zu dem Lochzustand und sind daher auch als eine solche Überlagerung beschreibbar. Misst man die Wahrscheinlichkeit, mit der ein Elektron im zweiten Laserimpuls freigesetzt wird, so schwankt sie periodisch mit der Verzögerungszeit. Dies entspricht genau dem quantenmechanischen Verhalten einer solchen Überlagerung, die zwischen den Orbitalen mit m = 0 und m = ±1 hin- und herpendelt.

Für m = 0 ist das Elektron wegen der Ausrichtung des Orbitals parallel zum elektrischen Feld (der angreifenden Kraft) leichter zu ionisieren und es wird auch bevorzugt in diese Richtung freigesetzt. Die Geschwindigkeiten der Elektronen haben aber auch eine Komponente senkrecht (transversal) zum Laserfeld. Da in dieser Richtung der Laser keine Kraft ausübt, könnte man erwarten, damit einen direkten Zugang zur anfänglichen Geschwindigkeitsverteilung im gebundenen Zustand zu erhalten. Es sind aber zwei Störeffekte zu berücksichtigen: Erstens wird die Tunnelstrecke bei ‚schiefer‘ Durchdringung der Barriere etwas länger. Zweitens stört die stets vorhandene Anziehungskraft des Atomkerns die beobachtete Verteilung.

Um dieses Problem zu umgehen, haben die Forscher folgenden Trick angewandt: Sie bestimmten die Differenz der transversalen Geschwindigkeitsverteilung für einen bestimmten Zeitpunkt zur zeitgemittelten Verteilung. Als Zeitpunkte wählten sie jene, wo sich das Elektron überwiegend im Orbital mit m = 0 bzw. m = ±1 befindet. Im Zustand m = 0 bewegt sich das Elektron vorzugsweise in Richtung des Laserfeldes – die Geschwindigkeiten senkrecht dazu fallen kleiner aus. Die Zustände m = ±1 können als ‚Kreisbewegung‘ in der Ebene senkrecht zum Laserfeld veranschaulicht werden – mit hier entsprechend größerer Geschwindigkeit. Pendelt das Elektron nun zwischen den beiden Zuständen, so beobachtet man abwechselnd in der Differenz ein Defizit bzw. einen Überschuss bei kleineren bzw. größeren Geschwindigkeiten (Abbildung).

„Durch die Differenzbildung fallen die Störeffekte weitgehend heraus, da sie zeitunabhängig sind, während die zeitabhängige Schwingung der Elektronenwolke deutlich sichtbar bleibt“, erläutert Lutz Fechner, Doktorand in der Gruppe von Robert Moshammer. „Somit sind wir in der Lage, mit unseren Messungen gängige theoretische Modelle für die Tunnelionisation zu testen. Wir waren sogar überrascht, wie gut die Übereinstimmung mit einem einfachen theoretischen Modell ist, welches die Störung durch die Kernladung gar nicht berücksichtigt.“ Von zukünftigen Experimenten erwarten die Forscher detaillierte Informationen über den Ionisationsprozess in starken Laserfeldern und über die Dynamik mehrerer gebundener Elektronen.

Originalveröffentlichung:
Strong-field tunneling from a coherent superposition of electronic states
Lutz Fechner, Nicolas Camus, Joachim Ullrich, Thomas Pfeifer and Robert Moshammer
Phys. Rev. Lett. 112, 213001 (2014); DOI: 10.1103/PhysRevLett.112.213001

Kontakt:

Lutz Fechner
MPI für Kernphysik
E-Mail: lutz.fechner@mpi-hd.mpg.de
Tel.: +49 6221 526-429

Dr. Robert Moshammer
MPI für Kernphysik
E-Mail: robert.moshammer@mpi-hd.mpg.de
Tel.: +49 6221 526-461

Dr. Thomas Pfeifer
MPI für Kernphysik
E-Mail: thomas.pfeifer@mpi-hd.mpg.de
Tel.: +49 6221 526-380

Weitere Informationen:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.213001 Originalveröffentlichung
http://www.mpi-hd.mpg.de/ullrich/page.php?tag=laser Gruppe von Robert Moshammer am MPIK

Dr. Bernold Feuerstein | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie