Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwarzes Loch beleuchtet kosmisches Netz

20.01.2014
Astronomen gelingt erstmals direkte Aufnahme der großräumigen Filamentstrukturen im All

Den gängigen Vorstellungen der Kosmologen zufolge bildet die Materie im Weltall auf riesigen Größenskalen ein verzweigtes Netz von Filamenten aus Gas. Die große Mehrheit der Wasserstoffatome sind seit dem Urknall ein Teil dieses weitgehend unveränderten kosmischen Netzwerks.


Der beobachtete Ausschnitt des kosmischen Netzwerks (türkisfarben) mit einer Ausdehnung von rund zwei Millionen Lichtjahren, der in der direkten Umgebung des Quasars UM 287 (Bildmitte) beobachtet wurde. Das Gas leuchtet dank desselben Effekts, dem auch Leuchtstoffröhren ihr Licht verdanken. Dies ist das erste Bild eines Teils des kosmischen Netzwerks aus Gasfilamenten, das eine Schlüsselrolle für die Sternentstehung in Galaxien spielen dürfte.

© S. Cantalupo (UCSC)



Das All im Computer: Simulationen weisen auf die Existenz eines kosmischen Netzwerks aus Gasfilamenten auf Größenskalen von Millionen von Lichtjahren und mehr hin. Die Simulation im Hintergrund zeigt die Verteilung zwar nicht des Gases, aber von Dunkler Materie, die keinerlei Licht aussendet (Bolshoi-Simulation von Anatoly Klypin und Joel Primack). Diese Dunkle Materie bildet das Grundgerüst des kosmischen Netzwerks aus Gas. Das kleinere Bild zeigt einen stark vergrößerten Ausschnitt aus einem Teil des kosmischen Netzwerks. Der Durchmesser des Ausschnitts beträgt zehn Millionen Lichtjahre; die entsprechende Simulation berücksichtigt zusätzlich zur Dunklen Materie auch das kosmische Gas (Simulation: S. Cantalupo). Die intensive Strahlung eines Quasars kann einen Teil des umgebenden kosmischen Netzwerks wie ein Scheinwerfer anstrahlen (dieser Teil ist im kleinen Bild hervorgehoben) und ein Filament des Gases zum Leuchten anregen. Genau das haben Forscher im Falle des Quasars UM 287 beobachtet.

© A. Klypin/J. Primack und S. Cantalupo

Jetzt ist Forschern der University of California at Santa Cruz und des Max-Planck-Instituts für Astronomie erstmals eine Aufnahme dieser Filamentstruktur gelungen. Sie nutzten dafür die intensive Strahlung, die ein supermassereiches schwarzes Loch in einem Quasar erzeugt.

Computersimulationen sagen vorher, dass die meisten Atome im Universum auf Größenskalen von Hunderten Millionen Lichtjahren und mehr eine Art Netzwerk aus Wasserstoffgas bilden – mit Filamenten, die an Knotenpunkten miteinander verbunden sind. Galaxien wie unsere Milchstraße entstehen diesem Modell zufolge an genau solchen Knotenpunkten; Wasserstoffgas, das entlang der Filamente auf eine Galaxie fällt, ist eine wichtige Zutat für die Bildung neuer Sterne in solchen Galaxien.

Direkt überprüfen ließ sich diese Vorstellung von der großräumigen Struktur des Kosmos allerdings bisher nicht: Selbst an den dichtesten Knotenpunkten ist das Wasserstoffgas so extrem verdünnt, dass es kaum Licht aussendet und sich sogar mit den größten derzeit verfügbaren Teleskopen nicht nachweisen lässt.

Jetzt haben Astronomen erstmals ein direktes Bild eines Teilgebiets des kosmischen Netzwerks aufgenommen. Sie nutzten dabei den Umstand, dass sogenannte Quasare wie kosmische Scheinwerfer wirken und nahegelegene Gaswolken anstrahlen können. Das Kerngebiet einer Galaxie kann zwischenzeitlich zu einem Quasar werden, wenn Materie auf das zentrale, supermassereiche schwarze Loch der Galaxie fällt und dabei gewaltige Energien freisetzt.

Die Wirtsgalaxie des Quasars sitzt – wie andere größere Milchstraßensysteme auch – an einem der Knoten des kosmischen Netzwerks, und der Quasar kann somit die direkt umliegenden Gasfilamente anstrahlen.

Dabei kommt es zum selben Effekt, der auch das Gas in einer Leuchtstoffröhre zum Leuchten anregt: zur Fluoreszenz. Bei einer Leuchtstofflampe liefert der elektrische Strom die zur Anregung nötige Energie. In diesem astronomischen Beispiel ist es das intensive Licht des Quasars UM 287.

„Das Licht eines solchen Quasars gleicht dem Strahl eines Scheinwerfers. In unserem Falle haben wir das Glück, dass dieser Scheinwerfer direkt auf ein Filament des kosmischen Netzwerks gerichtet ist und dessen Gas zum Leuchten bringt”, sagt Sebastiano Cantalupo, Forscher an der University of California/Santa Cruz und Erstautor der jetzt veröffentlichten Studie. Mithilfe des Zehn-Meter-Keck I-Teleskops auf Hawaii und einem speziell angefertigten Filter konnten die Astronomen ein Bild des fluoreszierenden Gases aufnehmen. Dessen Licht erreicht uns in einem ganz bestimmten, eng begrenzten Bereich des elektromagnetischen Spektrums – und der Filter lässt genau diese Art von Licht durch.

Das Wasserstoffgas in den praktisch leeren Weiten zwischen den Galaxien haben Astronomen bereits seit Jahrzehnten auf eine andere, indirekte Weise untersucht. Diese Messung erlaubte es allerdings nur, Eigenschaften desjenigen kosmischen Gases zu bestimmen, das sich entlang der Verbindungslinie zwischen einem fernen Hintergrund-Quasar und dem irdischen Beobachter befand.

Solch ein eindimensionaler Ausschnitt reicht bei Weitem nicht aus, um die gesamte dreidimensionale Struktur des Netzwerks sichtbar zu machen. „Zum ersten Mal ist es gelungen, ein Bild des kosmischen Netzes aufzunehmen, das dessen Filamentstruktur zeigt”, sagt Fabrizio Arrigoni Battaia, ein an der Forschung beteiligter Doktorand am Heidelberger Max-Planck-Institut für Astronomie. Der Ausschnitt auf dem Bild misst im Durchmesser rund zwei Millionen Lichtjahre.

Mithilfe solcher Beobachtungen lassen sich die Ergebnisse von Supercomputer-Simulationen testen, mit denen Kosmologen die Entstehung großräumiger Strukturen im Universum nachvollziehen. Tatsächlich gibt bereits die hier beschriebene Studie Hinweise darauf, dass diesen Simulationen offenbar wichtige Elemente fehlen: So lässt sich aufgrund der Beobachtungen der Gehalt des kosmischen Netzwerks an kühlem Gas abschätzen – und das Ergebnis liegt deutlich über den Vorhersagen der Simulationen!

„Wenn man verstehen will, wie Galaxien geboren werden, dann muss man wissen, welches Rohmaterial sie für die Sternentstehung zur Verfügung haben – und dieses Rohmaterial beziehen die Galaxien aus dem riesigen kosmischen Netz aus Gasfilamenten“, sagt Joseph Hennawi, Gruppenleiter am Max-Planck-Institut für Astronomie und an der Studie beteiligt.

Die neuen Beobachtungen stellen das Verständnis in dieser Hinsicht durchaus auf die Probe: Sie legen nahe, dass eine Menge des Gases in Form kleiner, dichter Einzelwolken vorliegt – ein Umstand, den die Modelle derzeit noch nicht berücksichtigen. „Wenn wir hier Klarheit schaffen können, verspricht das wichtige Erkenntnisse über die Galaxienevolution”, sagt Hennawi.

Ansprechpartner

Dr. Markus Pössel
Öffentlichkeitsarbeit
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-261
E-Mail: pr@mpia.de
Dr. Joseph F. Hennawi
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-263
E-Mail: joe@mpia.de
Fabrizio Arrigoni Battaia
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-203
E-Mail: arrigoni@mpia.de
Originalpublikation
S. Cantalupo et al.
Cosmic Web filament revealed in Lyman α emission around a luminous high-redshift Quasar

Nature, 19 January 2014, DOI 10.1038/nature12898

Dr. Markus Pössel | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7735323/schwarzes_loch_beleuchtet_kosmisches_netz

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Tauchgang in einen Magneten
20.07.2017 | Paul Scherrer Institut (PSI)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie