Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnittbild eines Molekülorbitals

08.04.2016

Physikern der Universität Würzburg ist es erstmals gelungen, Details der Elektronenhülle eines Moleküls abzubilden. Aus diesen können sie Informationen über die Moleküleigenschaften gewinnen und damit möglicherweise zur Entwicklung neuer Materialien beitragen.

Es sieht ein wenig aus wie eine Ansammlung von Bienenwaben, die sich in Gruppen von jeweils sieben Waben kreisförmig angeordnet haben: das Molekül Coronen. 24 Kohlenstoffatome bilden dabei sechs Benzolringe mit zwölf Wasserstoffatomen an der Außenseite. Im Unterschied zu einer Bienenwabe ist dieses Molekül allerdings flach.


Energiespektren (a) und Winkelverteilungen der Elektronen(b-d) geben erstmals Einblick in die Kopplung zwischen elektronischen Zuständen und Schwingungen (e) von Molekülen.

Grafik: Martin Graus

Physiker der Universität Würzburg haben jetzt mit Hilfe einer speziellen Technik ein Bild dieses Moleküls gewonnen, das ihnen Informationen über ganz spezielle Eigenschaften, nämlich die Kopplung von Schwingungen an Anregung in der Elektronenhülle, liefert. Das war bisher nur auf der Basis theoretischer Berechnungen möglich. Unterstützt wurden sie dabei von Wissenschaftlern des Max-Planck-Instituts in Halle, der Universität Bayreuth und des Forschungszentrums Jülich. In der aktuellen Ausgabe der Physical Review Letters stellen sie ihre Arbeit vor.

Schwingungsvarianten im Molekül

„Die Elektronen in den Hüllen um die Atomkerne – Physiker sprechen von Atom- oder Molekülorbitalen – sind verantwortlich für die physikalischen, chemischen und strukturellen Eigenschaften von Atomen und Molekülen“, erklärt Dr. Achim Schöll, Physiker und Privatdozent am Lehrstuhl für Experimentelle Physik VII der Universität Würzburg. Dabei stehen die Elektronen allerdings immer auch in einer Wechselwirkung mit dem Molekülgerüst . Änderungen der Elektronenhülle führen somit auch zu einer Veränderung der Molekülstruktur und zur Anregung von Schwingung der Atomkerne.

Solche Veränderungen waren bislang im Experiment schon beobachtbar. Das Problem dabei: „Die experimentellen Daten haben uns nur gesagt, dass eine Schwingung eine bestimmte Energie besitzt. Allerdings gibt es in einem Molekül eine Menge Schwingungsmoden mit sehr ähnlicher Energie“, so Achim Schöll. Während nämlich in einem Molekül, das aus zwei Atomen aufgebaut ist, nur eine Schwingungsmode existiert – die Atome können sich nur aufeinander zu oder voneinander weg bewegen –steigt die Zahl der Möglichkeiten mit wachsender Atomanzahl schnell an.

Bessere Bilder dank neuer Technik

Ein detailreicheres Bild haben die Forscher jetzt mit Hilfe der winkelaufgelösten Photoelektronenspektroskopie gewonnen. In ihren Experimenten haben sie das Coronen-Molekül ionisiert – ihm also ein Elektron weggenommen – und dabei die Winkelverteilung der Elektronen analysiert. Diese Daten sind charakteristisch für ein bestimmtes Molekülorbital und zeigen bestimmte Veränderungen, wenn das Molekül aufgrund der Anregung von Schwingungen verzerrt wird. Der Vergleich der winkelabhängigen Messungen mit simulierten Verteilungen für alle in Frage kommenden Schwingungen wurde durch die effiziente Zusammenarbeit der Würzburger und Bayreuther Doktoranden Martin Graus und Matthias Dauth möglich und lieferte ihnen dann eine Übereinstimmung für eine spezielle Schwingungsmode.

Grundlagenforschung sei diese Arbeit, erklärt Achim Schöll. Konkrete Ergebnisse in Form von neuen Materialien mit überraschenden Eigenschaften würden sich nicht daraus ergeben – zumindest nicht sofort. Allerdings zeigen die Physiker damit einen neuen Weg auf, um den Zusammenhang von Ladung und Schwingung in einem Molekül weiter zu erforschen. Und diese Koppelung von Ladung und Schwingung ist dann eben doch entscheidend für die Eigenschaften vieler Materialien, auf die sich die Hoffnung der Wissenschaft richtet – beispielsweise wenn es darum geht, Supraleiter zu finden, die bereits bei Zimmertemperatur funktionieren, oder Halbleiter, die leistungsfähiger sind als die heute verwendeten.

Gut sechs Jahre haben die Vorarbeiten von Achim Schöll und seiner Arbeitsgruppe für den jetzt veröffentlichten Aufsatz gedauert. In den nächsten Schritten wollen die Physiker die Schwingungen weiterer Moleküle betrachten und deren Orbitale im angeregten Zustand im Realraum rekonstruieren.

Electron-Vibration Coupling in Molecular Materials: Assignment of Vibronic Modes from Photoelectron Momentum Mapping. M. Graus, M. Grimm, C. Metzger, M. Dauth, C. Tusche, J. Kirschner, S. Kümmel, A. Schöll, and F. Reinert. Physical Review Letters, dx.doi.org/10.1103/PhysRevLett.116.147601

Kontakt

PD Dr. Achim Schöll, T: (0931) 31-85127, achim.schoell@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics