Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnittbild eines Molekülorbitals

08.04.2016

Physikern der Universität Würzburg ist es erstmals gelungen, Details der Elektronenhülle eines Moleküls abzubilden. Aus diesen können sie Informationen über die Moleküleigenschaften gewinnen und damit möglicherweise zur Entwicklung neuer Materialien beitragen.

Es sieht ein wenig aus wie eine Ansammlung von Bienenwaben, die sich in Gruppen von jeweils sieben Waben kreisförmig angeordnet haben: das Molekül Coronen. 24 Kohlenstoffatome bilden dabei sechs Benzolringe mit zwölf Wasserstoffatomen an der Außenseite. Im Unterschied zu einer Bienenwabe ist dieses Molekül allerdings flach.


Energiespektren (a) und Winkelverteilungen der Elektronen(b-d) geben erstmals Einblick in die Kopplung zwischen elektronischen Zuständen und Schwingungen (e) von Molekülen.

Grafik: Martin Graus

Physiker der Universität Würzburg haben jetzt mit Hilfe einer speziellen Technik ein Bild dieses Moleküls gewonnen, das ihnen Informationen über ganz spezielle Eigenschaften, nämlich die Kopplung von Schwingungen an Anregung in der Elektronenhülle, liefert. Das war bisher nur auf der Basis theoretischer Berechnungen möglich. Unterstützt wurden sie dabei von Wissenschaftlern des Max-Planck-Instituts in Halle, der Universität Bayreuth und des Forschungszentrums Jülich. In der aktuellen Ausgabe der Physical Review Letters stellen sie ihre Arbeit vor.

Schwingungsvarianten im Molekül

„Die Elektronen in den Hüllen um die Atomkerne – Physiker sprechen von Atom- oder Molekülorbitalen – sind verantwortlich für die physikalischen, chemischen und strukturellen Eigenschaften von Atomen und Molekülen“, erklärt Dr. Achim Schöll, Physiker und Privatdozent am Lehrstuhl für Experimentelle Physik VII der Universität Würzburg. Dabei stehen die Elektronen allerdings immer auch in einer Wechselwirkung mit dem Molekülgerüst . Änderungen der Elektronenhülle führen somit auch zu einer Veränderung der Molekülstruktur und zur Anregung von Schwingung der Atomkerne.

Solche Veränderungen waren bislang im Experiment schon beobachtbar. Das Problem dabei: „Die experimentellen Daten haben uns nur gesagt, dass eine Schwingung eine bestimmte Energie besitzt. Allerdings gibt es in einem Molekül eine Menge Schwingungsmoden mit sehr ähnlicher Energie“, so Achim Schöll. Während nämlich in einem Molekül, das aus zwei Atomen aufgebaut ist, nur eine Schwingungsmode existiert – die Atome können sich nur aufeinander zu oder voneinander weg bewegen –steigt die Zahl der Möglichkeiten mit wachsender Atomanzahl schnell an.

Bessere Bilder dank neuer Technik

Ein detailreicheres Bild haben die Forscher jetzt mit Hilfe der winkelaufgelösten Photoelektronenspektroskopie gewonnen. In ihren Experimenten haben sie das Coronen-Molekül ionisiert – ihm also ein Elektron weggenommen – und dabei die Winkelverteilung der Elektronen analysiert. Diese Daten sind charakteristisch für ein bestimmtes Molekülorbital und zeigen bestimmte Veränderungen, wenn das Molekül aufgrund der Anregung von Schwingungen verzerrt wird. Der Vergleich der winkelabhängigen Messungen mit simulierten Verteilungen für alle in Frage kommenden Schwingungen wurde durch die effiziente Zusammenarbeit der Würzburger und Bayreuther Doktoranden Martin Graus und Matthias Dauth möglich und lieferte ihnen dann eine Übereinstimmung für eine spezielle Schwingungsmode.

Grundlagenforschung sei diese Arbeit, erklärt Achim Schöll. Konkrete Ergebnisse in Form von neuen Materialien mit überraschenden Eigenschaften würden sich nicht daraus ergeben – zumindest nicht sofort. Allerdings zeigen die Physiker damit einen neuen Weg auf, um den Zusammenhang von Ladung und Schwingung in einem Molekül weiter zu erforschen. Und diese Koppelung von Ladung und Schwingung ist dann eben doch entscheidend für die Eigenschaften vieler Materialien, auf die sich die Hoffnung der Wissenschaft richtet – beispielsweise wenn es darum geht, Supraleiter zu finden, die bereits bei Zimmertemperatur funktionieren, oder Halbleiter, die leistungsfähiger sind als die heute verwendeten.

Gut sechs Jahre haben die Vorarbeiten von Achim Schöll und seiner Arbeitsgruppe für den jetzt veröffentlichten Aufsatz gedauert. In den nächsten Schritten wollen die Physiker die Schwingungen weiterer Moleküle betrachten und deren Orbitale im angeregten Zustand im Realraum rekonstruieren.

Electron-Vibration Coupling in Molecular Materials: Assignment of Vibronic Modes from Photoelectron Momentum Mapping. M. Graus, M. Grimm, C. Metzger, M. Dauth, C. Tusche, J. Kirschner, S. Kümmel, A. Schöll, and F. Reinert. Physical Review Letters, dx.doi.org/10.1103/PhysRevLett.116.147601

Kontakt

PD Dr. Achim Schöll, T: (0931) 31-85127, achim.schoell@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE