Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnittbild eines Molekülorbitals

08.04.2016

Physikern der Universität Würzburg ist es erstmals gelungen, Details der Elektronenhülle eines Moleküls abzubilden. Aus diesen können sie Informationen über die Moleküleigenschaften gewinnen und damit möglicherweise zur Entwicklung neuer Materialien beitragen.

Es sieht ein wenig aus wie eine Ansammlung von Bienenwaben, die sich in Gruppen von jeweils sieben Waben kreisförmig angeordnet haben: das Molekül Coronen. 24 Kohlenstoffatome bilden dabei sechs Benzolringe mit zwölf Wasserstoffatomen an der Außenseite. Im Unterschied zu einer Bienenwabe ist dieses Molekül allerdings flach.


Energiespektren (a) und Winkelverteilungen der Elektronen(b-d) geben erstmals Einblick in die Kopplung zwischen elektronischen Zuständen und Schwingungen (e) von Molekülen.

Grafik: Martin Graus

Physiker der Universität Würzburg haben jetzt mit Hilfe einer speziellen Technik ein Bild dieses Moleküls gewonnen, das ihnen Informationen über ganz spezielle Eigenschaften, nämlich die Kopplung von Schwingungen an Anregung in der Elektronenhülle, liefert. Das war bisher nur auf der Basis theoretischer Berechnungen möglich. Unterstützt wurden sie dabei von Wissenschaftlern des Max-Planck-Instituts in Halle, der Universität Bayreuth und des Forschungszentrums Jülich. In der aktuellen Ausgabe der Physical Review Letters stellen sie ihre Arbeit vor.

Schwingungsvarianten im Molekül

„Die Elektronen in den Hüllen um die Atomkerne – Physiker sprechen von Atom- oder Molekülorbitalen – sind verantwortlich für die physikalischen, chemischen und strukturellen Eigenschaften von Atomen und Molekülen“, erklärt Dr. Achim Schöll, Physiker und Privatdozent am Lehrstuhl für Experimentelle Physik VII der Universität Würzburg. Dabei stehen die Elektronen allerdings immer auch in einer Wechselwirkung mit dem Molekülgerüst . Änderungen der Elektronenhülle führen somit auch zu einer Veränderung der Molekülstruktur und zur Anregung von Schwingung der Atomkerne.

Solche Veränderungen waren bislang im Experiment schon beobachtbar. Das Problem dabei: „Die experimentellen Daten haben uns nur gesagt, dass eine Schwingung eine bestimmte Energie besitzt. Allerdings gibt es in einem Molekül eine Menge Schwingungsmoden mit sehr ähnlicher Energie“, so Achim Schöll. Während nämlich in einem Molekül, das aus zwei Atomen aufgebaut ist, nur eine Schwingungsmode existiert – die Atome können sich nur aufeinander zu oder voneinander weg bewegen –steigt die Zahl der Möglichkeiten mit wachsender Atomanzahl schnell an.

Bessere Bilder dank neuer Technik

Ein detailreicheres Bild haben die Forscher jetzt mit Hilfe der winkelaufgelösten Photoelektronenspektroskopie gewonnen. In ihren Experimenten haben sie das Coronen-Molekül ionisiert – ihm also ein Elektron weggenommen – und dabei die Winkelverteilung der Elektronen analysiert. Diese Daten sind charakteristisch für ein bestimmtes Molekülorbital und zeigen bestimmte Veränderungen, wenn das Molekül aufgrund der Anregung von Schwingungen verzerrt wird. Der Vergleich der winkelabhängigen Messungen mit simulierten Verteilungen für alle in Frage kommenden Schwingungen wurde durch die effiziente Zusammenarbeit der Würzburger und Bayreuther Doktoranden Martin Graus und Matthias Dauth möglich und lieferte ihnen dann eine Übereinstimmung für eine spezielle Schwingungsmode.

Grundlagenforschung sei diese Arbeit, erklärt Achim Schöll. Konkrete Ergebnisse in Form von neuen Materialien mit überraschenden Eigenschaften würden sich nicht daraus ergeben – zumindest nicht sofort. Allerdings zeigen die Physiker damit einen neuen Weg auf, um den Zusammenhang von Ladung und Schwingung in einem Molekül weiter zu erforschen. Und diese Koppelung von Ladung und Schwingung ist dann eben doch entscheidend für die Eigenschaften vieler Materialien, auf die sich die Hoffnung der Wissenschaft richtet – beispielsweise wenn es darum geht, Supraleiter zu finden, die bereits bei Zimmertemperatur funktionieren, oder Halbleiter, die leistungsfähiger sind als die heute verwendeten.

Gut sechs Jahre haben die Vorarbeiten von Achim Schöll und seiner Arbeitsgruppe für den jetzt veröffentlichten Aufsatz gedauert. In den nächsten Schritten wollen die Physiker die Schwingungen weiterer Moleküle betrachten und deren Orbitale im angeregten Zustand im Realraum rekonstruieren.

Electron-Vibration Coupling in Molecular Materials: Assignment of Vibronic Modes from Photoelectron Momentum Mapping. M. Graus, M. Grimm, C. Metzger, M. Dauth, C. Tusche, J. Kirschner, S. Kümmel, A. Schöll, and F. Reinert. Physical Review Letters, dx.doi.org/10.1103/PhysRevLett.116.147601

Kontakt

PD Dr. Achim Schöll, T: (0931) 31-85127, achim.schoell@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops