Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelle Rechner für viele Teilchen

29.05.2012
Superschnelle Rechner sind gefragt, wenn Physiker das Verhalten vieler Teilchen in Festkörpern simulieren. Fakher Assaad, Professor am Institut für Theoretische Physik der Universität Würzburg, kann jetzt mit solchen Rechnern arbeiten: Das John-von-Neumann-Institut für Computing hat sein Projekt als Exzellenzprojekt 2012 ausgewählt. Der Preis: Rechenzeit auf den Super-Computern des Instituts.

In der aktuellen Liste der Top 500 Supercomputer liegt er auf Platz 13: der Jugene - Blue Gene/P Solution-Superrechner, den das Forschungszentrum Jülich betreibt.

825 Billionen Rechenoperationen kann er pro Sekunde verarbeiten; 144 Terabyte groß ist sein Arbeitsspeicher, in seinem Herz schlagen 294.912 PowerPC 450-Prozessoren im Takt von 850 Megahertz. Unter anderem auf diesem Rechner kann der Würzburger Physiker Professor Fakher Assaad in den nächsten Monaten seiner Forschung nachgehen.

Das John-von-Neumann-Institut für Computing hat seinem Forschungsprojekt die Auszeichnung „John von Neumann Exzellenzprojekt 2012“ verliehen; damit verbunden ist jede Menge Rechenzeit an den Jülicher Supercomputern. Assaads Projekt sei wegen seiner „ausgezeichneten Vorarbeiten, der hohen Bedeutung der zu erwartenden Erkenntnisse und der Qualität der eingesetzten Methoden“ ausgewählt worden, heißt es in einer Pressemitteilung des Instituts.

Fakher Assaads Forschung: Vielteilchensysteme

Assaad und seine Mitarbeiter untersuchen Materialien, deren Eigenschaften durch hochgradige Koppelung vieler Elektronen untereinander bestimmt sind. Von „Vielteilchensystemen“ sprechen die Physiker in solchen Fällen. „Solche Systeme verhalten sich völlig anders als die einfache Summe der einzelnen Teilchen. Die daraus entstehende Komplexität bringt eine große Vielfalt an Phänomenen mit sich“, sagt Assaad. „Vielteilchen“: das können übrigens leicht mal 1023 sein.

Bei so vielen Teilchen, die auch noch untereinander in Verbindung stehen, ist es klar, dass sich deren Verhalten nur mit höchst komplexen numerischen Simulationen nachstellen lässt. Enorm schnelle Rechner übernehmen somit eine zentrale Rolle, wenn es darum geht, die zugrunde liegenden kollektiven Phänomene zu erforschen. Assaad und sein Team wollen mit der Rechenleistung, die ihnen auf den Jülicher Supercomputern zur Verfügung steht, insbesondere Materialien mit sogenanntem „Quantenmagnetismus“ untersuchen. Bei ihnen ist das quantenphysikalische Wechselspiel der Elektronen von zentraler Bedeutung für die magnetischen Eigenschaften.

Die Forschung an solchen „korrelierten Elektronensystemen“ ist nicht nur Gegenstand der Grundlagenforschung. „Die starke Reaktion solcher Materialien auf äußere Störungen wie Temperaturunterschiede oder Magnetfelder verspricht eine Vielzahl von technischen Anwendungen in der Zukunft“, sagt Assaad. Verbesserte Algorithmen und die ständig steigende Leistung moderner Supercomputer in den vergangenen Jahrzehnten bieten den Physikern die Chance, die fundamentalen Prozesse in diesen Elektronensystemen immer besser zu verstehen.

„Die Rechenzeit, die wir im Rahmen des John-von-Neumann-Exzellenzprojekts 2012 zur Verfügung gestellt bekommen, ermöglicht es uns unter anderem, unser Verständnis auf dem Gebiet des Quantenmagnetismus und des Zusammenspiels der Spin-Bahn-Wechselwirkung mit elektronischen Korrelationen voranzutreiben“, sagt Assaad.

Das John-von-Neumann-Institut für Computing

Das John-von-Neumann-Institut für Computing (NIC) ist eine gemeinschaftliche Gründung des Forschungszentrums Jülich und der Stiftung Deutsches Elektronen-Synchrotron DESY. Seine Aufgabe ist es, die supercomputergestützte naturwissenschaftlich-technische Forschung und Entwicklung zu fördern. Seine Mitarbeiter vergeben nach intensiver Prüfung Rechenzeit auf Supercomputern für Projekte der Wissenschaft, Forschung und Industrie. Die Höchstleistungsrechner mit der erforderlichen informationstechnischen Infrastruktur werden am Standort Jülich vom Jülich Supercomputing Centre und bei DESY vom Zentrum für Paralleles Rechnen in Zeuthen betrieben.

Kontakt
Prof. Dr. Fakher Assaad, T: (0931) 31-83652, assaad@physik.uni-wuerzburg.de

Robert Emmerich | idw

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie