Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelle Rechner für viele Teilchen

29.05.2012
Superschnelle Rechner sind gefragt, wenn Physiker das Verhalten vieler Teilchen in Festkörpern simulieren. Fakher Assaad, Professor am Institut für Theoretische Physik der Universität Würzburg, kann jetzt mit solchen Rechnern arbeiten: Das John-von-Neumann-Institut für Computing hat sein Projekt als Exzellenzprojekt 2012 ausgewählt. Der Preis: Rechenzeit auf den Super-Computern des Instituts.

In der aktuellen Liste der Top 500 Supercomputer liegt er auf Platz 13: der Jugene - Blue Gene/P Solution-Superrechner, den das Forschungszentrum Jülich betreibt.

825 Billionen Rechenoperationen kann er pro Sekunde verarbeiten; 144 Terabyte groß ist sein Arbeitsspeicher, in seinem Herz schlagen 294.912 PowerPC 450-Prozessoren im Takt von 850 Megahertz. Unter anderem auf diesem Rechner kann der Würzburger Physiker Professor Fakher Assaad in den nächsten Monaten seiner Forschung nachgehen.

Das John-von-Neumann-Institut für Computing hat seinem Forschungsprojekt die Auszeichnung „John von Neumann Exzellenzprojekt 2012“ verliehen; damit verbunden ist jede Menge Rechenzeit an den Jülicher Supercomputern. Assaads Projekt sei wegen seiner „ausgezeichneten Vorarbeiten, der hohen Bedeutung der zu erwartenden Erkenntnisse und der Qualität der eingesetzten Methoden“ ausgewählt worden, heißt es in einer Pressemitteilung des Instituts.

Fakher Assaads Forschung: Vielteilchensysteme

Assaad und seine Mitarbeiter untersuchen Materialien, deren Eigenschaften durch hochgradige Koppelung vieler Elektronen untereinander bestimmt sind. Von „Vielteilchensystemen“ sprechen die Physiker in solchen Fällen. „Solche Systeme verhalten sich völlig anders als die einfache Summe der einzelnen Teilchen. Die daraus entstehende Komplexität bringt eine große Vielfalt an Phänomenen mit sich“, sagt Assaad. „Vielteilchen“: das können übrigens leicht mal 1023 sein.

Bei so vielen Teilchen, die auch noch untereinander in Verbindung stehen, ist es klar, dass sich deren Verhalten nur mit höchst komplexen numerischen Simulationen nachstellen lässt. Enorm schnelle Rechner übernehmen somit eine zentrale Rolle, wenn es darum geht, die zugrunde liegenden kollektiven Phänomene zu erforschen. Assaad und sein Team wollen mit der Rechenleistung, die ihnen auf den Jülicher Supercomputern zur Verfügung steht, insbesondere Materialien mit sogenanntem „Quantenmagnetismus“ untersuchen. Bei ihnen ist das quantenphysikalische Wechselspiel der Elektronen von zentraler Bedeutung für die magnetischen Eigenschaften.

Die Forschung an solchen „korrelierten Elektronensystemen“ ist nicht nur Gegenstand der Grundlagenforschung. „Die starke Reaktion solcher Materialien auf äußere Störungen wie Temperaturunterschiede oder Magnetfelder verspricht eine Vielzahl von technischen Anwendungen in der Zukunft“, sagt Assaad. Verbesserte Algorithmen und die ständig steigende Leistung moderner Supercomputer in den vergangenen Jahrzehnten bieten den Physikern die Chance, die fundamentalen Prozesse in diesen Elektronensystemen immer besser zu verstehen.

„Die Rechenzeit, die wir im Rahmen des John-von-Neumann-Exzellenzprojekts 2012 zur Verfügung gestellt bekommen, ermöglicht es uns unter anderem, unser Verständnis auf dem Gebiet des Quantenmagnetismus und des Zusammenspiels der Spin-Bahn-Wechselwirkung mit elektronischen Korrelationen voranzutreiben“, sagt Assaad.

Das John-von-Neumann-Institut für Computing

Das John-von-Neumann-Institut für Computing (NIC) ist eine gemeinschaftliche Gründung des Forschungszentrums Jülich und der Stiftung Deutsches Elektronen-Synchrotron DESY. Seine Aufgabe ist es, die supercomputergestützte naturwissenschaftlich-technische Forschung und Entwicklung zu fördern. Seine Mitarbeiter vergeben nach intensiver Prüfung Rechenzeit auf Supercomputern für Projekte der Wissenschaft, Forschung und Industrie. Die Höchstleistungsrechner mit der erforderlichen informationstechnischen Infrastruktur werden am Standort Jülich vom Jülich Supercomputing Centre und bei DESY vom Zentrum für Paralleles Rechnen in Zeuthen betrieben.

Kontakt
Prof. Dr. Fakher Assaad, T: (0931) 31-83652, assaad@physik.uni-wuerzburg.de

Robert Emmerich | idw

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften