Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneekanonen auf Enceladus

24.03.2010
Forscher finden heraus, wie die Eisgeysire auf dem Mond den E-Ring um Saturn speisen und obendrein für leichten Schneefall sorgen

Der Saturnmond Enceladus ist verblüffend aktiv. Vor nicht allzu langer Zeit entdeckte man Hinweise auf einen Ozean unter seiner Kruste. Außerdem schleudern Eisgeysire in der Südpolregion Teilchen ins All. Dabei entkommen die schnellen Partikel der Anziehungskraft des Mondes, landen im E-Ring von Saturn und werden zum Großteil von Enceladus wieder eingesammelt; die langsameren Eisteilchen dagegen sorgen für leichten Schneefall in der Umgebung der Geysire. Das fanden Forscher des Max-Planck-Instituts für Kernphysik mit ihrem Staubdetektor an Bord der NASA/ESA-Raumsonde Cassini heraus. Dazu verglichen sie Modellrechnungen mit Messungen der Raumsonde (Icarus 206, 446-457, 2010).


Dünne Streifen von hellem, eisigem Material erstrecken sich über Tausende von Kilometern von den Eisgeysiren am Südpol des Enceladus in den E-Ring des Saturns. Diese Gegenlichtaufnahme im sichtbaren Licht wurde mit der Weitwinkelkamera der Raumsonde Cassini aus einer Entfernung von 2,1 Millionen Kilometern gewonnen. Bild: NASA/JPL/Space Science Institute

Enceladus stößt Fontänen von mikroskopischen Eispartikeln und Wasserdampf aus, die den diffusen äußeren E-Ring um Saturn speisen. Durchflüge von oben nach unten durch diesen Ring ermöglichten Messungen seiner Dicke und Struktur. Das wichtigste Instrument war der Staubdetektor CDA des Heidelberger Max-Planck-Instituts für Kernphysik. "Die Daten lieferten unerwartete Details darüber, wie der Ring mit Material versorgt wird", sagt Sascha Kempf. "Mit unseren Modellrechnungen und Simulationen konnten wir auch den Teilchenausstoß einzelner Eisgeysire ableiten."

Sowohl die Produktionsraten der Eisgeysire als auch die dynamischen Eigenschaften der Eispartikel variieren erheblich. Die meisten der ausgestoßenen Teilchen werden von Enceladus während der folgenden zwei Umläufe um Saturn wieder eingesammelt, während die restlichen Teilchen vermutlich 50 bis 400 Jahre im Ring bleiben.

Bei ungefähr senkrechten Durchflügen durch den E-Ring fanden die Wissenschaftler auf den ersten Blick die erwartete glatte Glockenkurve für die Verteilung der Teilchen mit dem Maximum in der Mitte und Ausdünnen nach oben und unten. Unerwartete Spitzen in der Verteilung - vor allem in der Nähe von Enceladus - erwiesen sich bei genauerer Untersuchung nicht etwa als statistische Fluktuationen, sondern als echt: Sie spiegeln den Teilchenausstoß einzelner Eisgeysire wider. Die Aktivität jedes einzelnen Geysirs ist in der vertikalen Struktur des Rings abgebildet. Die Stärke der Spitzen zeigt, dass einige Geysire mehr ausstoßen als andere; dadurch verraten sich ihre Auswürfe auch noch in großer Entfernung.

Die Berechnungen der Teilchenflugbahnen ergaben, dass größere Partikel mit Durchmessern über 0,7 Mikrometer (tausendstel Millimeter) nur dauerhaft von Enceladus in den E-Ring entkommen können, wenn sie deutlich schneller sind als 207 Meter pro Sekunde - der Fluchtgeschwindigkeit von der Enceladusoberfläche. Dagegen werden kleinere Teilchen von den elektromagnetischen Kräften im rotierenden Magnetfeld des Saturns mitgerissen und können auf diese Weise leichter von Enceladus entkommen; dort vorhandene Ionen laden die zunächst neutralen Teilchen auf.

Das Modell liefert auch Aussagen darüber, wo und wie viel des Auswurfmaterials der Eisgeysire als "Schneefall" auf der Enceladusoberfläche niedergeht: Unabhängig von ihrer Größe landen die meisten Eispartikel in unmittelbarer Nähe der Schlote in der sogenannten Tigerstreifenregion im Südpolargebiet. Dort wächst die Schneedecke jährlich allerdings nur um einen halben Millimeter.

Frühere optische Messungen der Raumsonde Cassini ergaben, dass die Eiskörnchen auf der Enceladusoberfläche am Südpol erheblich größer sind als die von den Geysiren ausgestoßenen Teilchen. Außerdem nimmt ihre Größe mit zunehmendem Abstand von den Tigerstreifen ab. Das lässt sich durch physikalische Vorgänge auf der Oberfläche erklären: Kleine Körnchen wachsen durch Umkristallisieren oder Zusammenbacken unter dem Einfluss lokaler Wärme; andererseits schlagen Mikrometeoriten Körner aus der Eisoberfläche.

Weitere Messungen bei Durchflügen durch den E-Ring und nahen Vorbeiflügen an Enceladus während der verlängerten Cassini-Mission sollen den Forschern helfen, mögliche Variationen in der Aktivität der Eisgeysire zu entdecken. Sie schlagen vor, mit den Kameras und Spektrometern die Farben der einzelnen Fontänen zu analysieren, um die Größenverteilung der Eispartikel darin zu bestimmen.

Originalveröffentlichung:

S. Kempf, U. Beckmann, J. Schmidt
How the Enceladus dust plume feeds Saturn’s E ring
Icarus 206, 446-457 (2010)
Weitere Informationen erhalten Sie von:
Dr. Gertrud Hönes, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-572
E-Mail: info@mpi-hd.mpg.de
Dr. Sascha Kempf
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516247
E-Mail: sascha.kempf@mpi-hd.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie