Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneekanonen auf Enceladus

24.03.2010
Forscher finden heraus, wie die Eisgeysire auf dem Mond den E-Ring um Saturn speisen und obendrein für leichten Schneefall sorgen

Der Saturnmond Enceladus ist verblüffend aktiv. Vor nicht allzu langer Zeit entdeckte man Hinweise auf einen Ozean unter seiner Kruste. Außerdem schleudern Eisgeysire in der Südpolregion Teilchen ins All. Dabei entkommen die schnellen Partikel der Anziehungskraft des Mondes, landen im E-Ring von Saturn und werden zum Großteil von Enceladus wieder eingesammelt; die langsameren Eisteilchen dagegen sorgen für leichten Schneefall in der Umgebung der Geysire. Das fanden Forscher des Max-Planck-Instituts für Kernphysik mit ihrem Staubdetektor an Bord der NASA/ESA-Raumsonde Cassini heraus. Dazu verglichen sie Modellrechnungen mit Messungen der Raumsonde (Icarus 206, 446-457, 2010).


Dünne Streifen von hellem, eisigem Material erstrecken sich über Tausende von Kilometern von den Eisgeysiren am Südpol des Enceladus in den E-Ring des Saturns. Diese Gegenlichtaufnahme im sichtbaren Licht wurde mit der Weitwinkelkamera der Raumsonde Cassini aus einer Entfernung von 2,1 Millionen Kilometern gewonnen. Bild: NASA/JPL/Space Science Institute

Enceladus stößt Fontänen von mikroskopischen Eispartikeln und Wasserdampf aus, die den diffusen äußeren E-Ring um Saturn speisen. Durchflüge von oben nach unten durch diesen Ring ermöglichten Messungen seiner Dicke und Struktur. Das wichtigste Instrument war der Staubdetektor CDA des Heidelberger Max-Planck-Instituts für Kernphysik. "Die Daten lieferten unerwartete Details darüber, wie der Ring mit Material versorgt wird", sagt Sascha Kempf. "Mit unseren Modellrechnungen und Simulationen konnten wir auch den Teilchenausstoß einzelner Eisgeysire ableiten."

Sowohl die Produktionsraten der Eisgeysire als auch die dynamischen Eigenschaften der Eispartikel variieren erheblich. Die meisten der ausgestoßenen Teilchen werden von Enceladus während der folgenden zwei Umläufe um Saturn wieder eingesammelt, während die restlichen Teilchen vermutlich 50 bis 400 Jahre im Ring bleiben.

Bei ungefähr senkrechten Durchflügen durch den E-Ring fanden die Wissenschaftler auf den ersten Blick die erwartete glatte Glockenkurve für die Verteilung der Teilchen mit dem Maximum in der Mitte und Ausdünnen nach oben und unten. Unerwartete Spitzen in der Verteilung - vor allem in der Nähe von Enceladus - erwiesen sich bei genauerer Untersuchung nicht etwa als statistische Fluktuationen, sondern als echt: Sie spiegeln den Teilchenausstoß einzelner Eisgeysire wider. Die Aktivität jedes einzelnen Geysirs ist in der vertikalen Struktur des Rings abgebildet. Die Stärke der Spitzen zeigt, dass einige Geysire mehr ausstoßen als andere; dadurch verraten sich ihre Auswürfe auch noch in großer Entfernung.

Die Berechnungen der Teilchenflugbahnen ergaben, dass größere Partikel mit Durchmessern über 0,7 Mikrometer (tausendstel Millimeter) nur dauerhaft von Enceladus in den E-Ring entkommen können, wenn sie deutlich schneller sind als 207 Meter pro Sekunde - der Fluchtgeschwindigkeit von der Enceladusoberfläche. Dagegen werden kleinere Teilchen von den elektromagnetischen Kräften im rotierenden Magnetfeld des Saturns mitgerissen und können auf diese Weise leichter von Enceladus entkommen; dort vorhandene Ionen laden die zunächst neutralen Teilchen auf.

Das Modell liefert auch Aussagen darüber, wo und wie viel des Auswurfmaterials der Eisgeysire als "Schneefall" auf der Enceladusoberfläche niedergeht: Unabhängig von ihrer Größe landen die meisten Eispartikel in unmittelbarer Nähe der Schlote in der sogenannten Tigerstreifenregion im Südpolargebiet. Dort wächst die Schneedecke jährlich allerdings nur um einen halben Millimeter.

Frühere optische Messungen der Raumsonde Cassini ergaben, dass die Eiskörnchen auf der Enceladusoberfläche am Südpol erheblich größer sind als die von den Geysiren ausgestoßenen Teilchen. Außerdem nimmt ihre Größe mit zunehmendem Abstand von den Tigerstreifen ab. Das lässt sich durch physikalische Vorgänge auf der Oberfläche erklären: Kleine Körnchen wachsen durch Umkristallisieren oder Zusammenbacken unter dem Einfluss lokaler Wärme; andererseits schlagen Mikrometeoriten Körner aus der Eisoberfläche.

Weitere Messungen bei Durchflügen durch den E-Ring und nahen Vorbeiflügen an Enceladus während der verlängerten Cassini-Mission sollen den Forschern helfen, mögliche Variationen in der Aktivität der Eisgeysire zu entdecken. Sie schlagen vor, mit den Kameras und Spektrometern die Farben der einzelnen Fontänen zu analysieren, um die Größenverteilung der Eispartikel darin zu bestimmen.

Originalveröffentlichung:

S. Kempf, U. Beckmann, J. Schmidt
How the Enceladus dust plume feeds Saturn’s E ring
Icarus 206, 446-457 (2010)
Weitere Informationen erhalten Sie von:
Dr. Gertrud Hönes, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-572
E-Mail: info@mpi-hd.mpg.de
Dr. Sascha Kempf
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516247
E-Mail: sascha.kempf@mpi-hd.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz