Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneckentempo statt Lichtgeschwindigkeit

07.12.2011
Nicht immer muss ein Teilchen den Berg der Aktivierungsenergie überwinden.

Unter bestimmten Bedingungen nehmen Atome eine Abkürzung, indem sie das Hindernis einfach durchtunneln. Physikern der Universität Bonn ist es nun gelungen, an stark gekühlten Rubidium-Atomen und einem optischen Gitter diesen schon im Jahr 1929 beschriebenen Klein-Tunneleffekt zu beobachten, der eigentlich Teilchen nahe der Lichtgeschwindigkeit vorbehalten ist. Sie stellen ihre Ergebnisse in der aktuellen Ausgabe der Zeitschrift „Physical Review Letters“ vor.

Wenn ein Ball genügend Schwung hat, rollt er locker über einen kleineren Hügel hinweg. Ist der Berg allerdings zu steil und zu hoch, kullert das runde Gebilde wieder zurück. Ähnlich ergeht es auch atomaren Teilchen, wenn sie einen „Energieberg“ überwinden müssen. Ist ihre Aktivierungsenergie geringer als für die Höhe der Barriere erforderlich, können die Partikel das Hindernis nicht überwinden. Soweit die klassische Physik. Doch in der Quantenmechanik gibt es auch Ausnahmen: Unter bestimmten Voraussetzungen schaffen es die Teilchen, den Berg quasi zu durchtunneln. Beim üblichen Quantentunneln können extrem dünne und flache Barrieren überwunden werden. Aber bereits 1929 sagte der schwedische Physiker Oskar Klein für sehr schnelle Teilchen voraus, dass sie im Prinzip sogar beliebig dicke Barrieren passieren können. Dieses Phänomen ist als Klein-Tunneleffekt bekannt.

Viele Teilchen auf engstem Raum

Für die Beobachtung des Klein-Tunneleffekts an frei fliegenden Elektronen müssten die Teilchen mit nahezu der Lichtgeschwindigkeit von rund 300.000 Kilometer pro Sekunde dahinrasen. „Außerdem bräuchte man gigantische elektrische Feldstärken von 10.000.000.000.000.000 Volt – also zehn Billiarden Volt – pro Zentimeter“, sagt Prof. Dr. Martin Weitz vom Institut für Angewandte Physik der Universität Bonn. „Solch hohe Feldstärken haben bisher eine experimentelle Beobachtung verhindert.“ Mit Hilfe eines variabel geformten optischen Gitters wies das Forscherteam um Prof. Weitz nun das Klein-Tunneln eines atomaren Bose-Einstein-Kondensats nach. Es entsteht, wenn so viele Teilchen auf engstem Raum konzentriert werden, dass sie nicht mehr zu unterscheiden sind. Sie verhalten sich dann wie ein einziges „Superteilchen“.

Quantenmechanische Effekte verwandeln „Berge“ in „Täler“

Mit der Versuchsanordnung verringerten die Wissenschaftler die effektive Lichtgeschwindigkeit der Teilchen von blitzschnell auf das Tempo einer Schnecke, die mit rund einem Zentimeter pro Sekunde dahin kriecht. Die Bonner Physiker erzeugten das Bose-Einstein-Kondensat, indem sie Rubidiumatome sehr stark abkühlten. Anschließend luden sie das Gebilde auf eine Art optische Wellpappe, die sie aus gegenläufigen Lichtwellen erzeugt hatten, und rüttelten gewissermaßen das Ganze durch. Dann bewegten sie den Haufen aus Rubidiumatomen auf den Potentialberg zu. Quantenmechanische Effekte sorgten wie von Zauberhand dafür, dass sich der „Berg“ für die pendelnden Rubidiumatome in ein leicht passierbares „Tal“ verwandelten. Interessanterweise verhielten sich die Atome hier wie rückwärts laufende Antiteilchen. „Dass Gitter macht aus den Rubidiumatomen relativistische Teilchen, die sich ganz anders verhalten, als es die klassische Physik vorhersagt“, erläutert Prof. Weitz.

Ergebnisse decken sich mit der relativistischen Wellengleichung

Vor dem Hintergrund der Alltagserfahrung lässt sich dieser Effekt nur schwer erklären. „Man kann sich das entfernt so vorstellen, als würden die Teilchen im Gitter sehr schnell hin und her pendeln“, sagt der Physiker der Universität Bonn. „Obwohl die Vorwärtsgeschwindigkeit verglichen mit einem rollenden Ball nur sehr gering ist, haben die Atome sehr viel Energie.“ Naht nun ein Berg, verringern die Teilchen ihre Pendelbewegung und stecken ihre Energie in den Gipfelsturm. „Dieses Experiment beweist, dass die Ergebnisse für ultrakalte Atome in optischen Gittern mit den Vorhersagen der relativistischen Wellengleichung übereinstimmen“, sagt Prof. Weitz. „Es lassen sich so sonst schwer zugängliche relativistische Effekte im Labormaßstab nachweisen“.

Publikation: Tobias Salger, Christopher Grossert, Sebastian Kling, and Martin Weitz: Klein-Tunneling of a Quasirelativistic Bose-Einstein Condensate in an Optical Lattice, Physical Review Letters, DOI: 10.1103/PhysRevLett.107.240401

Kontakt:

Prof. Dr. Martin Weitz
Institut für Angewandte Physik
Tel. 0228/734837 oder 734836
E-Mail: martin.weitz@uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise