Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneckentempo statt Lichtgeschwindigkeit

07.12.2011
Nicht immer muss ein Teilchen den Berg der Aktivierungsenergie überwinden.

Unter bestimmten Bedingungen nehmen Atome eine Abkürzung, indem sie das Hindernis einfach durchtunneln. Physikern der Universität Bonn ist es nun gelungen, an stark gekühlten Rubidium-Atomen und einem optischen Gitter diesen schon im Jahr 1929 beschriebenen Klein-Tunneleffekt zu beobachten, der eigentlich Teilchen nahe der Lichtgeschwindigkeit vorbehalten ist. Sie stellen ihre Ergebnisse in der aktuellen Ausgabe der Zeitschrift „Physical Review Letters“ vor.

Wenn ein Ball genügend Schwung hat, rollt er locker über einen kleineren Hügel hinweg. Ist der Berg allerdings zu steil und zu hoch, kullert das runde Gebilde wieder zurück. Ähnlich ergeht es auch atomaren Teilchen, wenn sie einen „Energieberg“ überwinden müssen. Ist ihre Aktivierungsenergie geringer als für die Höhe der Barriere erforderlich, können die Partikel das Hindernis nicht überwinden. Soweit die klassische Physik. Doch in der Quantenmechanik gibt es auch Ausnahmen: Unter bestimmten Voraussetzungen schaffen es die Teilchen, den Berg quasi zu durchtunneln. Beim üblichen Quantentunneln können extrem dünne und flache Barrieren überwunden werden. Aber bereits 1929 sagte der schwedische Physiker Oskar Klein für sehr schnelle Teilchen voraus, dass sie im Prinzip sogar beliebig dicke Barrieren passieren können. Dieses Phänomen ist als Klein-Tunneleffekt bekannt.

Viele Teilchen auf engstem Raum

Für die Beobachtung des Klein-Tunneleffekts an frei fliegenden Elektronen müssten die Teilchen mit nahezu der Lichtgeschwindigkeit von rund 300.000 Kilometer pro Sekunde dahinrasen. „Außerdem bräuchte man gigantische elektrische Feldstärken von 10.000.000.000.000.000 Volt – also zehn Billiarden Volt – pro Zentimeter“, sagt Prof. Dr. Martin Weitz vom Institut für Angewandte Physik der Universität Bonn. „Solch hohe Feldstärken haben bisher eine experimentelle Beobachtung verhindert.“ Mit Hilfe eines variabel geformten optischen Gitters wies das Forscherteam um Prof. Weitz nun das Klein-Tunneln eines atomaren Bose-Einstein-Kondensats nach. Es entsteht, wenn so viele Teilchen auf engstem Raum konzentriert werden, dass sie nicht mehr zu unterscheiden sind. Sie verhalten sich dann wie ein einziges „Superteilchen“.

Quantenmechanische Effekte verwandeln „Berge“ in „Täler“

Mit der Versuchsanordnung verringerten die Wissenschaftler die effektive Lichtgeschwindigkeit der Teilchen von blitzschnell auf das Tempo einer Schnecke, die mit rund einem Zentimeter pro Sekunde dahin kriecht. Die Bonner Physiker erzeugten das Bose-Einstein-Kondensat, indem sie Rubidiumatome sehr stark abkühlten. Anschließend luden sie das Gebilde auf eine Art optische Wellpappe, die sie aus gegenläufigen Lichtwellen erzeugt hatten, und rüttelten gewissermaßen das Ganze durch. Dann bewegten sie den Haufen aus Rubidiumatomen auf den Potentialberg zu. Quantenmechanische Effekte sorgten wie von Zauberhand dafür, dass sich der „Berg“ für die pendelnden Rubidiumatome in ein leicht passierbares „Tal“ verwandelten. Interessanterweise verhielten sich die Atome hier wie rückwärts laufende Antiteilchen. „Dass Gitter macht aus den Rubidiumatomen relativistische Teilchen, die sich ganz anders verhalten, als es die klassische Physik vorhersagt“, erläutert Prof. Weitz.

Ergebnisse decken sich mit der relativistischen Wellengleichung

Vor dem Hintergrund der Alltagserfahrung lässt sich dieser Effekt nur schwer erklären. „Man kann sich das entfernt so vorstellen, als würden die Teilchen im Gitter sehr schnell hin und her pendeln“, sagt der Physiker der Universität Bonn. „Obwohl die Vorwärtsgeschwindigkeit verglichen mit einem rollenden Ball nur sehr gering ist, haben die Atome sehr viel Energie.“ Naht nun ein Berg, verringern die Teilchen ihre Pendelbewegung und stecken ihre Energie in den Gipfelsturm. „Dieses Experiment beweist, dass die Ergebnisse für ultrakalte Atome in optischen Gittern mit den Vorhersagen der relativistischen Wellengleichung übereinstimmen“, sagt Prof. Weitz. „Es lassen sich so sonst schwer zugängliche relativistische Effekte im Labormaßstab nachweisen“.

Publikation: Tobias Salger, Christopher Grossert, Sebastian Kling, and Martin Weitz: Klein-Tunneling of a Quasirelativistic Bose-Einstein Condensate in an Optical Lattice, Physical Review Letters, DOI: 10.1103/PhysRevLett.107.240401

Kontakt:

Prof. Dr. Martin Weitz
Institut für Angewandte Physik
Tel. 0228/734837 oder 734836
E-Mail: martin.weitz@uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics