Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlaufenlos zum Gel

09.06.2016

Gele gehören längst zu unserem Alltag, kommen in den verschiedensten Produkten vor. Aber warum werden Gele überhaupt fest? Warum können sich die gelbildenden Teilchen nicht mehr frei wie in einer Flüssigkeit bewegen? Diese Fragen beschäftigen die Wissenschaft bereits seit Jahrzehnten. Einer Gruppe von Forschern der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der Heinrich-Heine-Universität Düsseldorf konnte nun nachweisen, dass diese Eigenschaft von Gelen gerichteten Teilchenketten in ihrer netzwerkartigen Struktur geschuldet ist. Ihre Ergebnisse haben sie nun in dem renommierten Journal Nature Communications* veröffentlicht.

Für diesen Nachweis untersuchten die Wissenschaftler als Modellsystem ein Gel, welches aus einer Mischung von Kolloiden, also Teilchen, die nur tausendstel Millimeter klein sind, und noch kleineren Makromolekülen, sogenannten Polymeren, entsteht. Bevor die flüssige Mischung zum Gel wird, können sich alle Teilchen frei bewegen.


Kolloidales Gel aufgenommen mit einem Konfokalmikroskop. Die Bildung eines solchen Gels geht einher mit gerichteten Ketten aus Teilchen (hier rot illustriert), die das gesamte System durchspannen.

Bild: Ronja Capellmann, Michael Schmiedeberg

Die Kolloide stoßen sich dabei in der Regel ab. Kommen sie sich jedoch so nahe, dass selbst die kleineren Polymere nicht mehr dazwischen passen, werden sie von diesen noch dichter zusammengeschoben. Dadurch bilden sich Kolloidketten.

Formt sich aus diesen Ketten ein komplexes Netzwerk im gesamten System, entsteht ein Gel – so lautete zumindest die bisherige Annahme.

... mehr zu:
»Gel »Kolloiden »Netzwerk »Teilchen »Zahnpasta

Denn die Wissenschaftler aus Erlangen und Düsseldorf haben jetzt herausgefunden, dass die Teilchenketten eine bestimmte Form haben müssen, um ein Gel zu bilden: Sie müssen gerichtet sein, das heißt, sie müssen sich ohne Schlaufen durch das System ziehen.

Bildlich gesprochen kann man sich das so vorstellen: Läuft man entlang einer gerichteten Kette, durchwandert man das System nur in eine Richtung, bei Schlaufen hingegen wäre man gezwungen, auch Schritte zurück zu machen. Durch diese gerichteten Teilchenketten, die dem System im Gegensatz zu Schlaufen Stabilität verleihen, entsteht die feste Eigenschaft des Gels.

Die Ergebnisse sind von großer Bedeutung für das Verständnis der Materialeigenschaften von Gelen, die zum Beispiel Zahnpasta, Gelatine und vielen anderen Kosmetik- und Lebensmittelprodukten beigemischt werden, um sie zu stabilisieren.

„Wir konnten zudem nachweisen, dass Gele dazu neigen, sich zusammenzuziehen, sobald es systemdurchspannende Teilchenketten gibt“, sagt Prof. Dr. Michael Schmiedeberg vom Institut für Theoretische Physik. „Das Wissen darum könnte dazu beitragen, die Herstellungsprozesse von Lebensmitteln noch zu verbessern.“

*Nature Communications: http://dx.doi.org/10.1038/NCOMMS11817

Weitere Informationen:
Prof. Dr. Michael Schmiedeberg
Tel.: 09131/85-28449
michael.schmiedeberg@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Berichte zu: Gel Kolloiden Netzwerk Teilchen Zahnpasta

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie