Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schicht in Ordnung

18.07.2016

Physiker der Universität Jena weisen gemeinsam mit Partnern erstmals flexible zweidimensionale Kristallgitter nach

Vor 20 Jahren waren Mobiltelefone noch fast so dick wie eine Brotbüchse, heutige Smartphones hingegen sind fast so dünn wie Butterbrotpapier.


Die Physiker Prof. Dr. Torsten Fritz (l.) und Matthias Meißner an einem Rastertunnelmikroskop.

Foto: Jan-Peter Kasper/FSU

Ein Grund dafür sind immer neue Forschungsergebnisse im Bereich der organischen Elektronik. Denn vor allem Schichten aus organischen Molekülen, die auf eine – meist metallische – Trägerstruktur aufgetragen werden, haben sich aufgrund ihrer geringen Stärke und ihrer halbleitenden und optischen Eigenschaften für Displays bewährt.

Um diese Methode weiterzuentwickeln, ist es deshalb notwendig, mehr darüber zu erfahren, was zwischen Molekül und Metall – oder auch zwischen verschiedenen Molekülschichten – passiert.

Ein wichtiger Fortschritt auf dem Forschungsgebiet dieser Grenzflächeneffekte ist jetzt Physikern der Friedrich-Schiller-Universität Jena gemeinsam mit Kollegen aus Mainz und Dresden gelungen. Sie haben herausgefunden, dass sich Kristallgitter organischer Moleküle flexibel auf einem kristallinen Trägersubstrat ausrichten. Ihre Ergebnisse haben die Jenaer Forscher in dem renommierten Fachjournal ACS Nano veröffentlicht.

Ein flexibles Kristallgitter gebildet

„Die etwa einen Nanometer großen Moleküle richten sich auf den im atomaren Maßstab gewellten Trägerstrukturen oft auf die gleiche Weise aus, um optimales Schichtwachstum zu erreichen“, sagt Prof. Dr. Torsten Fritz von der Universität Jena. „Dabei wachsen sie wie Kohlköpfe auf einem Acker in den entsprechenden Vertiefungen bzw. Ackerfurchen“, veranschaulicht der Festkörperphysiker.

„Das ist auch nicht überraschend, wenn beide Gitter strukturell zueinander passen – etwa als wenn man Eierpackungen aufeinanderstapelt.“ Doch auch wenn diese Deckungsgleichheit nicht vorliegt, ordnen sich die Moleküle häufig regelmäßig und hochgeordnet an. Um den Grund dafür näher bestimmen zu können, vermaßen die Jenaer Physiker die Kristallgitter der Moleküle mithilfe eines Rastertunnelmikroskops.

Dabei konnten sie zum ersten Mal nachweisen, dass die Moleküle ein flexibles Kristallgitter bilden. „Dieses ermöglicht es den Molekülen, sich so auf dem Trägersubstrat auszurichten, dass sie die größte Menge an Energie aus diesem Prozess herausholen“, erklärt Matthias Meißner, der die Experimente durchgeführt hat.

„Um im Bild zu bleiben: Die Kohlköpfe rollen, da sie miteinander verbunden sind, zwar nicht mehr alle in die Ackerfurchen, aber im Rahmen ihrer flexiblen Verbindungen richten sie sich so aus, dass sie alle den weitesten Weg herunterrollen und die größtmögliche Menge an potenzieller Energie freisetzen.“

Im Kristallgitter entstehe dabei eine Art Oberflächenspannung, deren Energie aber geringer sei als der Zugewinn, den man durch diese effiziente Auslenkung erreicht. Wichtig ist dabei, dass die Verbindungen flexibel sind und nicht starr. „Die Kohlköpfe sind sozusagen mit Gummibändern miteinander verbunden, nicht mit Holzstäben“, erklärt Fritz.

Das Phänomen sei zwar insgesamt nicht unbekannt gewesen, doch habe man ihm bisher kaum Bedeutung beigemessen. Durch den erstmaligen Nachweis der flexiblen Kristallgitter konnte Matthias Meißner ein Modell entwickeln und in Kooperation mit Theoretischen Physikern der Universität Jena den Effekt mathematisch beschreiben.

Für zukünftige technische Innovationen – etwa während der Entwicklung neuartiger Displays und Solarzellen – lässt sich das geordnete Wachstum der Molekülschichten auf nicht exakt passenden Oberflächen besser berücksichtigen bzw. kann man es sich vielleicht sogar zunutze machen, um definierte Grenzflächen zu erschaffen.

Ein Spezialist auf diesem Gebiet – der amerikanische Physiker Prof. Dr. Michael D. Ward von der New York University – veröffentlichte einen zusätzlichen Beitrag in ACS Nano, um die Ergebnisse der Jenaer Forscher zu würdigen und einzuordnen. Sein äußerst positives Fazit: Die neuen Ergebnisse machen die Erstellung molekularer Schichten interessanter, obwohl sie dadurch wahrscheinlich gleichzeitig komplizierter werden.

Original-Publikation:
Matthias Meissner et. al.: Flexible 2D Crystals of Polycyclic Aromatics Stabilized by Static Distortion Waves, ACS Nano, Article ASAP, DOI: 10.1021/acsnano.6b00935
Web: http://dx.doi.org/10.1021/acsnano.6b00935

Kontakt:
Prof. Dr. Torsten Fritz
Institut für Festkörperphysik der Universität Jena
Helmholtzweg 5, 07743 Jena
Tel.: 03641 / 947400
E-Mail: torsten.fritz[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Sebastian Hollstein | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie