Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sauerstoff mag Metalloxid-Kanten

09.04.2014

Experimente an der TU Wien konnten das Verhalten von Elektronen an winzigen Stufen auf Titanoxid-Oberflächen erklären. Wichtig ist das für bestimmte Solarzellen und für Katalysatoren.

Es kommt in Zahnpasta genauso vor wie in Solarzellen oder chemischen Katalysatoren: Titanoxid (TO2) ist ein Material mit vielen Einsatzmöglichkeiten.


Winzige Stufen auf Titanoxid-Oberflächen

TU Wien


Jiri Pavelec, Gareth Parkinson, Benjamin Daniel, Martin Setvin (v.l.n.r)

TU Wien

Obwohl es so oft verwendet wird, ist das Verhalten von Titanoxid-Oberflächen noch immer für Überraschungen gut: Prof. Ulrike Diebold konnte nun mit ihrem Team vom Institut für Angewandte Physik der TU Wien klären, warum sich Sauerstoffatome so gern an winzigen Kanten auf der Oberfläche von Titanoxid anlagern:

Genau dort können sich Elektronen ansammeln, die dem Sauerstoff das Andocken ermöglichen. Bei Solarzellen möchte man genau diesen Effekt vermeiden, für Katalysatoren hingegen kann das eine höchst erwünschte Reaktion sein, die sich nun ganz gezielt einsetzen lässt.

Mikroskopbilder von Titanoxid-Oberflächen

Titanoxid ist Ulrike Diebolds Lieblingsmaterial – für ihre aktuelle Publikation hat sie das Verhalten von Titanoxid-Oberflächen mit Rastertunnelmikroskopie und Rasterkraftmikroskopie untersucht.

Titanoxid kann für Solarzellen eingesetzt werden. In einem nicht besonders effizienten aber sehr billigen Typ, der sogenannten Grätzel-Zelle, spielt es die zentrale Rolle. „In Solarzellen sollen sich Elektronen frei bewegen können und sich nicht irgendwo an einem bestimmten Atom festsetzen“, erklärt Martin Setvin, Erstautor des Papers, das nun im Fachjournal „Angewandte Chemie“ erschien.

Umgekehrt ist es allerdings für manche Katalysatoren wichtig, dass sich Elektronen an Atomen der Oberfläche binden. Denn nur wo ein zusätzliches Elektron sitzt kann ein Sauerstoff-Atom an die Titanoxid-Oberfläche ankoppeln und dann für chemische Reaktionen genutzt werden.

Elektronen verbiegen das Kristallgitter

Dieses Festsetzen der Elektronen an einem bestimmten Atom der Oberfläche benötigt normalerweise aber einen beträchtlichen Energieaufwand. „Wenn sich ein Elektron an einem Titanatom lokalisiert, dann ändert sich die elektrische Ladung des Titanatoms, und aufgrund elektrostatischer Kräfte entsteht dann eine Verbiegung im Titanoxid-Kristallgitter“, sagt Ulrike Diebold. Um diese Verbiegung zu erzeugen, muss Energie aufgewendet werden – deshalb geschieht das normalerweise nicht.

Allerdings ist die Oberfläche von Titanoxid niemals völlig eben. Auf mikroskopischer Ebene entstehen winzige Stufen und Kanten – oft nur eine einzige Atomlage dick. Genau an diesen Kanten können sich Elektronen sehr leicht anlagern. Die Titanatome direkt an der Kante haben nur an einer Seite Nachbarn, sie lösen daher kaum elektrostatische Verbiegungen im Inneren des Kristallgitters aus, wenn sie durch die Aufnahme eines Elektrons ihren Ladungszustand ändern. „Tatsächlich können wir feststellen, dass genau an diesen Stellen der Sauerstoff andockt“, berichtet Diebold.

Bessere Solarzellen, wirkungsvollere Katalysatoren

Daraus lassen sich nun für die technologische Verwendung von Titanoxid verschiedene Schlüsse ziehen: Für photovoltaische Einsatzbereiche muss man solche Kanten eher vermeiden, für Katalysatoren bietet die Erkenntnis aber tolle neue Chancen. Man könnte Oberflächen ganz gezielt so mikrostrukturieren, dass möglichst viele Kanten entstehen und die Oberfläche dadurch chemisch noch viel reaktiver wird als sonst.

Rückfragehinweise:

Prof. Ulrike Diebold
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8
M: +43-664-605883467
ulrike.diebold@tuwien.ac.at

Martin Setvin, PhD
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13470
martin.setvin@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/tio2/ Bilderdownload
http://onlinelibrary.wiley.com/doi/10.1002/anie.201309796/abstract Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Max-Planck-Princeton-Partnerschaft in der Fusionsforschung bestätigt
23.11.2017 | Max-Planck-Institut für Plasmaphysik

nachricht Magnetfeld-Sensor Argus „sieht“ Kräfte im Bauteil
23.11.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Signal-Shaping macht Bits und Bytes Beine

23.11.2017 | Förderungen Preise

Maximale Sonnenenergie aus der Hausfassade

23.11.2017 | Architektur Bauwesen

Licht ermöglicht „unmögliches“ n-Dotieren von organischen Halbleitern

23.11.2017 | Energie und Elektrotechnik