Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rotierendes Schwarzes Loch, das Stern verschluckt, könnte sehr helles Aufleuchten erklären

12.12.2016

ESO-Teleskope helfen bei der Neuinterpretation heller Explosion

Einen außergewöhnlich hellen Lichtpunkt in einer fernen Galaxie hielt man lange für die hellste je beobachtete Supernova. Doch neue Beobachtungen mehrerer Observatorien, darunter auch ESO-Teleskope, ziehen diese Klassifikation des ASASSN-15lh getauften Ereignisses nun in Zweifel. Stattdessen schlägt eine Gruppe von Astronomen, darunter auch Wissenschaftler vom Max-Planck-Institut für extraterrestrische Physik in Garching, vor, dass die Ursache ein noch extremeres und sehr seltenes Ereignis gewesen sein könnte – ein schnell rotierendes Schwarzes Loch, das einen ihm zu nahe gekommenen Stern zerrissen hat.


Diese künstlerische Darstellung zeigt ein schnell rotierendes supermassereiches Schwarzes Loch, das von einer Akkretionsscheibe umgeben wird. Diese dünne Scheibe aus rotierender Materie besteht aus den Überresten eines sonnenähnlichen Sterns, der durch die Gezeitenkräfte des Schwarzen Lochs auseinandergerissen wurde. Stöße in den kollidierenden Trümmern sowie durch Akkretion erzeugte Wärme führten zu einem Helligkeitsausbruch, der einer Supernova-Explosion ähnelt.

Herkunftsnachweis: ESO, ESA/Hubble, M. Kornmesser

Im Jahr 2015 zeichnete die All Sky Automated Survey for SuperNovae (ASAS-SN) das Ereignis ASASSN-15lh auf, das man bislang für die hellste jemals entdeckte Supernova gehalten und als Hypernova eingestuft hat, also als Explosion eines extrem massereichen Sterns am Ende seines Lebens. Das Ereignis war doppelt so hell wie der bisherige Rekordhalter und war zum hellsten Zeitpunkt mehr als 20 mal heller als die gesamte von der Milchstraße emittierte Lichtmenge.

Ein internationales Team unter der Leitung von Giorgos Leloudas vom Weizmann Institute of Science in Israel und dem Dark Cosmology Centre in Dänemark hat nun weitere Beobachtungen der fernen Galaxie durchgeführt, die etwa 4 Milliarden Lichtjahre von der Erde entfernt ist und in der die Explosion stattgefunden hat. Darauf basierend haben sie eine neue Erklärung für dieses außergewöhnliche Ereignis vorgeschlagen.

Wir haben die Quelle des Ereignisses in den darauffolgenden 10 Monaten beobachtet und dabei festgestellt, dass die Erklärung dafürwahrscheinlich nicht in einer außerordentlich hellen Supernova zu finden ist. Unsere Ergebnisse zeigen, dass das Ereignis wahrscheinlich durch ein sich schnell drehendes, sehr massereiches Schwarzen Loch verursacht wurde, als es einen Stern niedriger Masse zerstört hat“, erklärt Leloudas.

In diesem Szenario haben die extremen Gravitationskräfte eines supermassereichen Schwarzen Lochs, das sich in der Mitte der Galaxie befindet, einen sonnenähnlichen Stern zerrissen, der ihm zu nahe gekommen ist – ein Ereignis, das im Englischen als Tidal Disruption Event bezeichnet wird und das bisher nur etwa 10 mal beobachtet werden konnte. In diesem Prozess wurde der Stern „spaghettifiziert“ und Stöße in den kollidierenden Trümmern sowie durch Akkretion erzeugte Wärme führten zu einem Helligkeitsausbruch. Dadurch erschien das Ereignis wie eine sehr helle Supernova-Explosion, obwohl die Masse des Sterns für eine Supernova nicht ausgereicht hätte.

Das Team stützt seine neuen Schlussfolgerungen auf Beobachtungen mit mehreren boden- und weltraumgebundenen Teleskopen. Dazu gehörte auch das Very Large Telescope (VLT) der ESO am Paranal-Observatorium, das New Technology Telescope (NTT) der ESO am La Silla-Observatorium und das Hubble-Weltraumteleskop der NASA/ESA [1]. Die Beobachtungen am NTT wurden im Rahmen der Public ESO Spectroscopic Survey of Transient Objects (PESSTO) durchgeführt.

Es gibt mehrere unabhängige Gesichtspunkte der Beobachtungen, die darauf hindeuten, dass dieses Ereignis tatsächlich dadurch entstand, dass ein Stern durch Gezeitenkräfte auseinandergerissen wurde, und nicht durch eine sehr leuchtkräftige Supernova“, erläutert Morgan Fraser von der University of Cambridge in Großbritannien (inzwischen am University College Dublin in Irland).

Die Daten zeigten insbesondere, dass das Ereignis während der 10-monatigen Folgebeobachtungen drei verschiedene Phasen durchlief. Diese Daten ähneln insgesamt eher dem, was bei einem gezeitenbedingten Auseinanderreißen zu erwarten wäre als einer sehr leuchtkräftigen Supernova. Da eine Wiederaufhellung im ultravioletten Licht sowie eine Temperaturerhöhung beobachtet werden konnte, sind das weitere Argumente, die gegen eine Supernova-Explosion sprechen. Darüber hinaus ist der Ort des Geschehens – eine rote, massereiche und wenig aktive Galaxie – nicht die typische Heimat für eine sehr leuchtkräftige Supernova-Explosion, die normalerweise in blauen Zwerggalaxien mit Sternentstehung vorkommt.

Obwohl die Forscher aus dem Team der Meinung sind, dass eine Supernova als Erklärung für das Ereignis sehr unwahrscheinlich ist, sehen sie auch ein, dass die klassische Art und Weise, wie ein Stern durch die Gezeitenkräfte eines Schwarzen Lochs zerrissen wird, ebenfalls keine angemessene Erklärung für das Ereignis wäre. Teammitglied Nicholas Stone von der Columbia University in den USA erläutert: „Das von uns vorgeschlagene Gezeiten-Sternzerissereignis kann nicht mit einem nicht-rotierenden supermassereichen Schwarzen Loch erklärt werden. Wir sind der Ansicht, dass ASASSN-15lh ein Gezeiten-Sternzerissereignis war, das aus einem ganz bestimmten Schwarzen Loch entstand.

Die Masse der Muttergalaxie setzt voraus, dass das sehr massereiche Schwarze Loch in ihrer Mitte eine Masse von mindestens 100 Millionen Sonnenmassen hat. Ein Schwarzes Loch dieser Masse wäre normalerweise nicht in der Lage, Sterne außerhalb seines Ereignishorizontes – die Grenze, innerhalb der nichts mehr der Gravitationskraft entkommen kann – zu zerreißen. Wenn es sich jedoch um ein Schwarzes Loch handelt, dass sich schnell dreht – ein sogenanntes Kerr-Loch – ändert sich die Situation und diese Grenze gilt nicht mehr.

Selbst mit allen gesammelten Daten können wir nicht mit hundertprozentiger Sicherheit sagen, dass das ASASSN-15lh Ereignis ein Gezeiten-Sternzerissereignis war“, fasst Leloudas zusammen. „Aber es ist mit Abstand die wahrscheinlichste Erklärung.

Endnoten

[1] Außer Daten vom Very Large Telescope der ESO, dem New Technology Telescope und dem Hubble-Weltraumteleskop der NASA/ESA nutzte das Team Beobachtungen des Swift-Forschungssatelliten der NASA, des Las Cumbres Observatory Global Telescope (LCOGT), des Australia Telescope Compact Array, des XMM-Newton der ESA, des Wide-Field Spectrograph (WiFeS) und des Magellan-Teleskops.

Weitere Informationen

Die hier vorgestellten Ergebnisse von G. Leloudas et al. erscheinen demnächst unter dem Titel „The Superluminous Transient ASASSN-15lh as a Tidal Disruption Event from a Kerr Black Hole ” in der neuen Fachzeitschrift Nature Astronomy.

Die beteiligten Wissenschaftler sind G. Leloudas (Weizmann Institute of Science, Rehovot, Israel; Niels Bohr Institute, Kopenhagen, Dänemark), M. Fraser (University of Cambridge, Cambridge, Großbritannien), N. C. Stone (Columbia University, New York, USA), S. van Velzen (The Johns Hopkins University, Baltimore, USA), P. G. Jonker (Netherlands Institute for Space Research, Utrecht, Niederlande; Radboud University Nijmegen, Niederlande), I. Arcavi (Las Cumbres Observatory Global Telescope Network, Goleta, USA; University of California, Santa Barbara, USA), C. Fremling (Stockholm University, Schweden), J. R. Maund (University of Sheffield, Großbritannien), S. J. Smartt (Queen’s University Belfast, Vereinigtes Königreich), T. Krühler (Max-Planck-Institut für extraterrestrische Physik, Garching b. München), J. C. A. Miller-Jones (ICRAR - Curtin University, Perth, Australien), P. M. Vreeswijk (Weizmann Institute of Science, Rehovot, Israel), A. Gal-Yam (Weizmann Institute of Science, Rehovot, Israel), P. A. Mazzali (Liverpool John Moores University, Großbritannien; Max-Planck-Institut für Astrophysik, Garching b. München), A. De Cia (ESO, Garching b. München), D. A. Howell (Las Cumbres Observatory Global Telescope Network, Goleta, USA; University of California Santa Barbara, USA), C. Inserra (Queen’s University Belfast, Vereinigtes Königreich), F. Patat (ESO, Garching b. München), A. de Ugarte Postigo (Instituto de Astrofisica de Andalucia, Granada, Spanien; Niels Bohr Institute, Kopenhagen, Dänemark), O. Yaron (Weizmann Institute of Science, Rehovot, Israel), C. Ashall (Liverpool John Moores University, Großbritannien), I. Bar (Weizmann Institute of Science, Rehovot, Israel), H. Campbell (University of Cambridge, Großbritannien; University of Surrey, Guildford, Großbritannien), T.-W. Chen (Max-Planck-Institut für extraterrestrische Physik, Garching b. München), M. Childress (University of Southampton, Großbritannien), N. Elias-Rosa (Osservatoria Astronomico di Padova, Italien), J. Harmanen (University of Turku, Piikkiö, Finnland), G. Hosseinzadeh (Las Cumbres Observatory Global Telescope Network, Goleta, USA; University of California Santa Barbara, USA), J. Johansson (Weizmann Institute of Science, Rehovot, Israel), T. Kangas (University of Turku, Piikkiö, Finnland), E. Kankare (Queen’s University Belfast, Vereinigtes Königreich), S. Kim (Pontificia Universidad Católica de Chile, Santiago, Chile), H. Kuncarayakti (Millennium Institute of Astrophysics, Santiago, Chile; Universidad de Chile, Santiago, Chile), J. Lyman (University of Warwick, Coventry, Großbritannien), M. R. Magee (Queen’s University Belfast, Vereinigtes Königreich), K. Maguire (Queen’s University Belfast, Vereinigtes Königreich), D. Malesani (University of Copenhagen, Dänemark; DTU Space, Dänemark), S. Mattila (University of Turku, Piikkiö, Finnland; Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Piikkiö, Finnland; University of Cambridge, Großbritannien), C. V. McCully (Las Cumbres Observatory Global Telescope Network, Goleta, USA; University of California Santa Barbara, USA), M. Nicholl (Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA), S. Prentice (Liverpool John Moores University, Großbritannien), C. Romero-Cañizales (Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute of Astrophysics, Santiago, Chile), S. Schulze (Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute of Astrophysics, Santiago, Chile), K. W. Smith (Queen’s University Belfast, UK), J. Sollerman (Stockholm University, Schweden), M. Sullivan (University of Southampton, Großbritannien), B. E. Tucker (Australian National University, Canberra, Australien; ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Australia), S. Valenti (University of California, Davis, USA), J. C. Wheeler (University of Texas at Austin, USA), and D. R. Young (Queen’s University Belfast, Vereinigtes Königreich).

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist einer der Hauptpartner bei ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das European Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Links

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org

Giorgos Leloudas
Niels Bohr Institute, University of Copenhagen
Copenhagen, Denmark
Tel: +972 89346511
E-Mail: giorgos@dark-cosmology.dk

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1644.

Dr. Carolin Liefke | ESO-Media-Newsletter

Weitere Berichte zu: ESO Haus der Astronomie Observatory Schwarzes Loch Supernova Telescope

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie