Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenblitze erzeugen „molekulares Schwarzes Loch“

01.06.2017

Mit einem ultraintensiven Röntgenblitz haben Forscher ein einzelnes Atom in einem Molekül kurzzeitig in eine Art elektromagnetisches ‚Schwarzes Loch‘ verwandelt. Anders als Schwarze Löcher im Weltall saugt das beschossene Atom allerdings nicht mit seiner Schwerkraft Materie aus der Umgebung an, sondern Elektronen über seine elektrische Ladung – und lässt damit sein Molekül innerhalb eines winzigen Sekundenbruchteils explodieren. Die Untersuchung liefert entscheidende Informationen für die Analyse von Biomolekülen mit Hilfe von Röntgenlasern, wie die Wissenschaftler im britischen Fachblatt „Nature“ erläutern.

Die Forscher beschossen Iodmethan-Moleküle (CH₃I) mit dem Röntgenlaser LCLS am US-Beschleunigerzentrum SLAC in Kalifornien. Die Blitze erreichten dabei eine Intensität von 100 Billiarden Kilowatt pro Quadratzentimeter. Das extrem energiereiche Röntgenlicht schlug 54 der 62 Elektronen aus dem Molekül, so entstand ein 54-fach positiv geladenes Molekül.


Das helle Röntgenlicht schlägt so viele Elektronen aus dem Iodatom, dass dieses wie eine Art elektromagnetisches Schwarzes Loch die Elektronen benachbarter Atome absaugt und sie davonschleudert.

Bild: Science Communication Lab/DESY

„Das ist unseres Wissens die höchste Ionisation, die je mit Licht erreicht worden ist“, erläutert Ko-Autor Robin Santra aus dem Forscherteam, Leitender DESY-Wissenschaftler am Hamburger Center for Free-Electron Laser Science (CFEL).

Diese Ionisation geschieht aber nicht auf einen Schlag. „Die Methylgruppe CH₃ ist quasi blind für die Röntgenstrahlung“, sagt Santra, der auch Physikprofessor an der Universität Hamburg ist. „Der Röntgenblitz entreißt zunächst dem Iodatom fünf bis sechs seiner Elektronen. Durch die resultierende hohe positive Ladung saugt das Iodatom die Elektronen von der Methylgruppe ab wie eine Art atomares Schwarzes Loch.“

Tatsächlich ist die Kraft auf die Elektronen dabei sogar wesentlich stärker als die eines typischen astrophysikalischen Schwarzen Lochs mit der Masse von etwa zehn Sonnen. „Solch ein echtes Schwarzes Loch könnte durch seine Gravitation auf ein Elektron keine vergleichbar hohe Kraft ausüben, egal wie nah man das Elektron an das Schwarze Loch heranbringt“, erläutert Santra.

Der Vorgang ist so schnell, dass die abgesaugten Elektronen noch vom selben Röntgenblitz hinauskatapultiert werden. Es entsteht eine Kettenreaktion, in deren Verlauf dem Iodmethan bis zu 54 seiner 62 Elektronen entrissen werden – alles in weniger als einer billionstel Sekunde.

„Auf diese Weise sammelt sich eine extreme positive Ladung innerhalb eines zehntel milliardstel Meters. Das zerreißt das Molekül“, sagt Ko-Autor Daniel Rolles von DESY und der Kansas State University.

Die Beobachtung dieser ultraschnellen Dynamik hat große Bedeutung für die Analyse komplexer Moleküle mit sogenannten Freie-Elektronen-Röntgenlasern (XFEL) wie LCLS in Kalifornien oder dem European XFEL bei Hamburg, der gerade in Betrieb genommen wird.

Diese Laser-Anlagen erzeugen extrem intensives Röntgenlicht, mit dem sich unter anderem die räumliche Struktur komplexer Moleküle auf einzelne Atome genau bestimmen lässt. Aus diesen Strukturinformationen schließen etwa Biologen auf die genaue Funktionsweise von Biomolekülen.

Ihre atomare Struktur geben die Moleküle preis, bevor sie explodieren, wie andere Wissenschaftler bereits gezeigt haben. Für die Untersuchung der Dynamik von Biomolekülen, wie etwa bei der Photosynthese, ist allerdings die Wirkung der Röntgenstrahlung auf die Elektronen von Bedeutung.

Das Iodmethan diente bei dieser Untersuchung als Modellsystem. „Iodmethan ist als relativ einfaches Molekül gut geeignet, um die Prozesse der Strahlungsschädigung in anderen, komplexer aufgebauten organischen Verbindungen zu verstehen“, sagt Ko-Autor Artem Rudenko von der Kansas State University. „Wenn mehr Nachbarn als die einzelne Methylgruppe vorhanden sind, können noch mehr Elektronen eingesaugt werden.“

Dem Team von Robin Santra ist es dabei erstmals gelungen, diese ultraschnelle Dynamik auch theoretisch zu beschreiben. Das war nur durch die Entwicklung eines neuen, weltweit einmaligen Computerprogramms möglich. „Es ist nicht nur das erste Mal, dass diese Untersuchung gelungen ist, wir haben sogar eine numerische Beschreibung des Vorgangs“, betont Ko-Autor Sang-Kil Son vom CFEL, der für das Entwicklungsteam des Computerprogramms verantwortlich ist. „Die Daten haben hohe Relevanz für Untersuchungen an Freie-Elektronen-Röntgenlasern, denn sie zeigen im Detail, was bei Strahlungsschäden tatsächlich passiert.“

An der Untersuchung waren außer DESY, der Kansas State University und SLAC die Tohoku-Universität in Japan, das Max-Planck-Institut für Kernphysik, die Universität für Wissenschaft und Technik Peking, die Universität Århus in Dänemark, die Physikalisch-Technische Bundesanstalt, das Max-Planck-Institut für medizinische Forschung, das Argonne National Laboratory in den USA, die Sorbonne-Universität in Paris, das Brookhaven National Laboratory in den USA, die University of Chicago, die Northwestern University in Evanston (USA) und die Universität Hamburg beteiligt.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung:
Femtosecond response of polyatomic molecules to ultra-intense hard X-rays; A. Rudenko, L. Inhester, K. Hanasaki, X. Li, S.J. Robatjazi, B. Erk, R. Boll, K. Toyota, Y. Hao, O. Vendrell, C. Bomme, E. Savelyev, B. Rudek, L. Foucar, S.H. Southworth, C.S. Lehmann, B. Kraessig, T. Marchenko, M. Simon, K. Ueda, K.R. Ferguson, M. Bucher, T. Gorkhover, S. Carron, R. Alonso-Mori, J.E. Koglin, J. Correa, G.J. Williams, S. Boutet, L. Young, C. Bostedt, S.-K. Son, R. Santra, and D. Rolles; „Nature”, 2017; DOI: 10.1038/nature22373

Weitere Informationen:

https://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=1232&am... - PM im Internet

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte