Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Raum-Zeit-Symmetrie macht optische Systeme unsichtbar

09.08.2012
Physiker der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben erstmals experimentell nachgewiesen, dass ein optisches System von einer Seite quasi unsichtbar sein und von der anderen wie ein Spiegel wirken kann. Die Ergebnisse wurden jetzt in der renommierten Fachzeitschrift „Nature“ publiziert.

Eines der Kernthemen der modernen Optik ist die Entwicklung photonischer Materialien und komplexer Systeme mit neuen Eigenschaften und hohem Anwendungspotential. Solche Metamaterialien beruhen derzeit vor allem auf der Manipulation der Lichtbrechung im Subwellenlängenbereich – auch so genannte „optische Tarnkappen“ funktionieren nach diesem Prinzip.


Künstlerische Illustration zur einseitigen Unsichtbarkeit: Kommt ein Lichtstrahl von links, so sind die Reflektionen an den rot-blauen Streukörpern aus PT-symmetrischem Material stärker als der Lichtstrahl selbst. Fällt der gleiche Lichtstrahl jedoch von rechts auf die aktiven Elemente, so ist die Reflektion stark unterdrückt und der Strahl kann die Elemente ungehindert durchdringen – die Streukörper sind von rechts somit unsichtbar.
Bild: Christoph Bersch


Die einseitige Unsichtbarkeit in der experimentellen Messung
Bild: Christoph Bersch

Vor kurzem wurde entdeckt, dass die Lichtausbreitung auch durch ein gezieltes Wechselspiel von Verstärkung und Verlusten substanziell beeinflusst werden kann. Dazu muss eine bestimmte Symmetriebedingung – die Parity-Time-Symmetrie (PT) –eingehalten werden, so dass bei einer Raum-Zeit-Spiegelung die Verstärkung und Verluste des Lichts ineinander überführt werden.

„Dieses neue Konzept wurde interessanterweise zuerst als alternative Interpretation der Quantentheorie entwickelt“, erklärt Prof. Dr. Ulf Peschel vom Institut für Optik, Information und Photonik der FAU. Gemeinsam mit dem Erlanger Max-Planck-Institut und ihren Kollegen aus Orlando konnten die Forscher dieses Prinzip jetzt auf die Optik übertragen und auf Lichtpulse in einem großen optischen Netzwerk anwenden. In ihren Experimenten zeigten die Wissenschaftler, dass sich Licht in Faserschleifen mit periodisch gesteuerter Verstärkung und Verlusten grundsätzlich anders ausbreitet als in konventionellen Materialien: Die Leistung optischer Felder kann sich nahezu explosionsartig verändern – in bestimmten Parameterbereichen bewegen sich die Flanken von Lichtpulsen mit Überlichtgeschwindigkeit.

Dank des Wechselspiels von Verstärkung und Verlusten werden so genannte PT-symmetrische Materialien sogar partiell unsichtbar: „Fällt ein Lichtstrahl von einer Seite auf das Medium, wird er vollständig und ohne jegliche Reflexionen transmittiert – das Licht verhält sich so, als sei kein Streukörper vorhanden“, erklärt Prof. Peschel. „Kommt der gleiche Lichtstrahl dagegen von der entgegengesetzten Seite, treten extrem starke Reflexionen auf.“ Das in den Experimenten angewendete Verfahren kann direkt auf mikrostrukturierte optische Systeme übertragen werden, wo es völlig neue Anwendungsmöglichkeiten eröffnet.

In dem Projekt arbeiten Wissenschaftler des Instituts für Optik, Information und Photonik der FAU, des Exzellenzclusters „Engineering of Advanced Materials“ (EAM), der Erlangen Graduate School in Advanced Optical Technologies (SAOT), des Max-Planck-Institut für die Physik des Lichts und der University of Central Florida in Orlando zusammen. Die Forschungsergebnisse wurden jetzt in der renommierten Fachzeitschrift Nature veröffentlicht (DOI:10.1038/nature11298).

Weitere Informationen für die Medien:

Alois Regensburger
Tel.: 09131/85-20343
alois.regensburger@mpl.mpg.de

Blandina Mangelkramer | idw
Weitere Informationen:
http://www.mpl.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften