Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rastersondenmikroskopie mit einer Quantenspitze

18.06.2012
Mit der kürzlich entwickelten Technik der „cold-atom scanning probe microscopy“ vermessen Physiker der Universität Tübingen das Kraftfeld einer Kohlenstoff-Nanoröhre.

Dispersionskräfte spielen eine zentrale Rolle bei der Anziehung zwischen Atomen und Molekülen. Sie beeinflussen nicht nur die Strukturbildung der Materie, sondern auch die Reibung in mikromechanischen Systemen, wie sie heutzutage z.B. als Beschleunigungs- oder Rotationssensoren in Autos und Smartphones Verwendung finden. Auch in unserer makroskopischen Welt lassen sich die Konsequenzen der Dispersionskräfte eindrucksvoll beobachten, wenn sie z.B. Spinnen und Geckos erlauben, sich kopfüber an Decken und Wänden zu bewegen. Wegen ihrer fundamentalen Bedeutung sind Dispersionskräfte ein zentrales Forschungsthema der Nanowissenschaften.


Die Abbildung zeigt das Abtasten einer Kohlenstoff-Nanoröhre mit einer ultrakalten Atomwolke (gelb). Die Atomwolke dient als Quantenspitze im neuen Rastersondenmikroskop. Das integrierte magnetische Förderband (unten zu sehen) dient zur Nanopositionierung der Quantenspitze. Abb: Uni Tübingen

Forschern der Universität Tübingen ist es nun gelungen, eine neue Technik für die Messung dieser Dispersionskräfte zu entwickeln. Als Grundlage dient das von ihnen entwickelte „cold-atom scanning probe microscope“, bei dem die Oberfläche einer Probe mit einer ultrakalten verdünnten Gaswolke als Sondenspitze abgetastet wird. Dabei kühlen die Wissenschaftler ein besonders reines Gas aus Rubidiumatomen auf Temperaturen unterhalb von einem Millionstel Grad über dem absoluten Nullpunkt ab und speichern die Atome in einer Magnetfalle. Diese „Quantenspitze“ kann präzise positioniert werden und ermöglicht so genaue Messungen der Wechselwirkungen zwischen Atomen und nanostrukturierten Oberflächen.

In ihrer Veröffentlichung in der aktuellen Ausgabe von „Nature Nanotechnologie“ berichten Prof. Dr. József Fortágh, Dr. Andreas Günther und ihre Mitarbeiter wie man mit Hilfe dieses Mikroskops Dispersionskräfte an Nano-Objekten vermessen kann. Dazu bringen sie die Quantenspitze in Berührung mit einer Kohlenstoff-Nanoröhre, einer der wichtigen Baumaterialien der Nanotechnologie, und beobachten die zeitlich aufgelöste Wechselwirkung. Damit sind sie erstmals in der Lage, winzige Dispersionskräfte mit bislang unerreichter Sensitivität zu nachzuweisen. Die Methode bietet neue Möglichkeiten für die Erforschung und Charakterisierung von Materialeigenschaften in der Nanotechnologie.

Die Autoren arbeiten am Tübinger Center for Collective Quantum Phenomena (CQ) des Fachbereichs Physik der Mathematisch-Naturwissenschaftlichen Fakultät. Die zwei mittlerweile promovierten Mitarbeiter Dr. Philipp Schneeweiß und Dr. Michael Gierling haben für ihre Arbeiten zur Rastersondenmikroskopie mit ultrakalten Atomwolken den Nanowissenschaftspreis 2011 der Arbeitsgemeinschaft der Nanotechnologie-Kompetenzzentren in Deutschland erhalten.

Die Studie entstand im Rahmen des BMBF-Forschungspreises „NanoFutur“, des Sonderforschungsbereich/Transregio 21, und des Kompetenznetzes „Funktionelle Nanostrukturen“ der Baden-Württemberg-Stiftung.

Publikation
P. Schneeweiß, M. Gierling, G. Visanescu, D. P. Kern, T. E. Judd, A. Günther und J. Fortágh: Dispersion forces between ultracold atoms and a carbon nanotube. Nature Nanotechnology, Online-Veröffentlichung vom 17. Juni 2012, DOI: 10.1038/NNANO.2012.93
Kontakt:
Dr. Andreas Günther, Prof. Dr. József Fortágh
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich Physik
Telefon: +49 7071 29-76281 und 29-76270
E-Mail: a.guenther@uni-tuebingen.de, fortagh@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Pharmakologie - Im Strom der Bläschen

21.07.2017 | Biowissenschaften Chemie

Verbesserung des mobilen Internetzugangs der Zukunft

21.07.2017 | Informationstechnologie

Blutstammzellen reagieren selbst auf schwere Infektionen

21.07.2017 | Biowissenschaften Chemie