Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum ist Quecksilber bei Raumtemperatur flüssig?

27.08.2013
Albert Einsteins spezielle Relativitätstheorie weist den Weg zur Lösung des Geheimnisses des Quecksilbers

Das „Geheimnis“ des Quecksilbers hat ein internationales Forscherteam unter Beteiligung von Wissenschaftlern der Universität Heidelberg mit Hilfe von Computerexperimenten gelöst. Auf der Basis von Simulationen und numerischen Verfahren sind sie der Frage nachgegangen, warum dieses Metall bei normalen Umgebungstemperaturen stets in flüssiger Form auftritt.

Dabei konnten die Forscher aus Neuseeland, Frankreich und Heidelberg nachweisen, dass der niedrige Schmelzpunkt auf der besonderen Elektronenstruktur von Quecksilber beruht, die sich nur mit Hilfe der speziellen Relativitätstheorie (SRT) von Albert Einstein erklären lässt. Die Forschungsergebnisse wurden im Fachjournal „Angewandte Chemie“ veröffentlicht.

„Quecksilber stellt mit seinen Eigenschaften die theoretische Chemie seit langem vor viele Rätsel. Sein Aggregatzustand ist unter Normalbedingungen stets flüssig, anders als bei anderen Metallen wie Zink, Gold oder Kupfer, denen viel Wärme zugefügt werden muss, bis sie schmelzen“, sagt der Physiker Dr. Michael Wormit, der am Interdisziplinären Zentrum für Wissenschaftliches Rechnen (IWR) der Universität Heidelberg auf dem Gebiet der Theoretischen Chemie forscht. „Quecksilber ähnelt in seinem Verhalten häufig eher einem Edelgas als einem Metall.“

Dass die Besonderheiten von Quecksilber ihre Ursache in Effekten der speziellen Relativitätstheorie haben, wird in der Forschung seit längerem vermutet, konnte aber bislang nicht quantitativ nachgewiesen werden. Mit dieser Theorie beschreibt Albert Einstein die Eigenschaften von sehr schnell bewegter Materie, die im Quecksilberatom in Form von 82 Elektronen auftritt. Das Quecksilberatom besitzt daher eine veränderte Elektronenstruktur gegenüber leichteren Atomen, bei denen solche Effekte eine geringere Rolle spielen.

Dr. Wormit hat zusammen mit Dr. Florent Calvo (Université de Lyon, Frankreich), Dr. Elke Pahl und Prof. Dr. Peter Schwerdtfeger (beide Massey University, Auckland, Neuseeland) die atomare Struktur von Quecksilber bestehend aus dem Atomkern und den dazugehörigen Elektronen am Rechner modelliert. Dabei wurde die Wechselwirkung der Quecksilberatome bei unterschiedlichem Druck und bei verschiedenen Temperaturen mit Hilfe von Computersimulationen untersucht.

„Lange Zeit reichte die Rechnerkapazität für Simulationen und Berechnungen dieser Art einfach nicht aus“, erläutert der Heidelberger Wissenschaftler, der bei seinen Forschungen auch die sogenannte Monte-Carlo-Simulation eingesetzt hat. Dieses mathematische Verfahren aus der Stochastik basiert auf Zufallsexperimenten, die in einer sehr großen Anzahl durchgeführt werden. Die zugrundeliegenden Fragestellungen werden dabei mit Hilfe der Wahrscheinlichkeitstheorie auf numerischem Weg gelöst, da eine deterministische Berechnung numerisch nicht durchführbar ist.

„Mit unserem Forschungsansatz, der sich erstmals mit den entsprechenden Rechnerkapazitäten realisieren ließ, konnten wir zeigen, dass die relativistischen Effekte für die Simulation von Quecksilbermaterialien von entscheidender Bedeutung sind. Ohne diese Effekte läge der Schmelzpunkt von kristallinem, sprich festem Quecksilber um 105 Grad Celsius höher und es wäre bei Raumtemperatur nicht flüssig, sondern fest“, erklärt Michael Wormit.

Informationen im Internet:
http://onlinelibrary.wiley.com/doi/10.1002/ange.201302742/abstract
http://onlinelibrary.wiley.com/doi/10.1002/anie.201302742/abstract
Originalveröffentlichung:
F. Calvo, E. Pahl, M. Wormit, P. Schwerdtfeger: Erklärung des niedrigen Schmelzpunkts von Quecksilber mit relativistischen Effekten, Angew. Chem. 2013, 125, 7731-7734, doi: 10.1002/ange.201302742 (Deutsche Fassung)

F. Calvo, E. Pahl, M. Wormit, P. Schwerdtfeger: Evidence for Low-Temperature Melting of Mercury owing to Relativity, Angew. Chem. Int. Ed. 2013, 52, 7583-7585, doi: 10.1002/anie.201302742 (Englische Fassung)

Kontakt:
Dr. Michael Wormit
Interdisziplinäres Zentrum für Wissenschaftliches Rechnen
Telefon (06221) 54-8781
michael.wormit@iwr.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle
Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie