Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenzustände in einem Nanoobjekt lassen sich durch mechanisches System manipulieren

04.08.2015

Wissenschaftler des Swiss Nanoscience Institute der Universität Basel haben mithilfe von Federbalken aus einkristallinen Diamanten ein neuartiges Bauteil entwickelt, bei dem ein Quantensystem in ein mechanisches schwingendes System integriert ist. Erstmals konnten die Forschenden zeigen, dass sich mit diesem mechanischen System ein im Federbalken eingebetteter Elektronenspin kohärent manipulieren lässt – und zwar ohne externe Antennen oder komplexe mikroelektronische Strukturen. Die Ergebnisse dieser experimentellen Studie werden in «Nature Physics» veröffentlicht.

Die Gruppe um den Georg-H.-Endress-Professor Patrick Maletinsky hat bereits in vorangegangen Veröffentlichungen beschrieben, dass sich Federbalken aus einkristallinen Diamanten mit einzelnen eingebetteten Elektronen bestens eignen, um den Spin dieser Elektronen zu adressieren.


Der schwingende Federbalken beeinflusst den Spin der Elektronen in den Stickstoffvakanzzentren (rote Pfeile).

Universität Basel

Diese Diamant-Federbalken wurden an mehreren Stellen so modifiziert, dass in ihrem Kristallgitter ein Kohlenstoffatom durch ein Stickstoffatom ersetzt wurde und gleich daneben eine Leerstelle entstand. In diesen «Stickstoff-Vakanzzentren» kreisen einzelne Elektronen, deren Spin oder Eigendrehimpuls in dieser Arbeit untersucht wurde.

Wird nun der Federbalken in Schwingung versetzt, entstehen Spannungen in der Kristallstruktur des Diamanten. Dies hat wiederum einen Einfluss auf den Spin der Elektronen, der bei einer Messung in zwei mögliche Richtungen (nach «oben» oder «unten») zeigen kann. Mithilfe von Fluoreszenzspektroskopie lässt sich diese Ausrichtung des Spins auslesen.

Extrem schnelle Spin-Oszillation

In der aktuellen Veröffentlichung haben die Wissenschaftler die Federbalken nun so geschüttelt, dass sie dadurch erstmals eine kohärente Oszillation des gekoppelten Spins induzieren konnten. Das bedeutet, dass der Eigendrehimpuls der Elektronen kontrolliert in einem schnellen Rhythmus von oben nach unten und umgekehrt wechselt und die Wissenschaftler zu jedem Zeitpunkt den Spinzustand kontrollieren können. Dabei ist diese Oszillation des Spins schnell verglichen mit der Frequenz des Federbalkens. Sie schützt den Spin zudem vor schädlichen Dekohärenz-Mechanismen.

Gut vorstellbar ist eine Anwendung dieser Diamant-Federbalken in der Sensorik, da sich die Auslenkung des Federbalkens über den veränderten Spin erfassen lässt, und zwar potenziell auf eine sehr sensitive Art und Weise.

Zudem kann nach den neuen Erkenntnissen der Spin über einen recht langen Zeitraum von annähernd hundert Mikrosekunden kohärent rotiert werden, was die Präzision der Messung erhöht. Eventuell liessen sich Stickstoff-Vakanzzentren auch zur Entwicklung eines Quantencomputers heranziehen. In diesem Fall wäre die in dieser Arbeit gezeigte schnelle Manipulation ihrer Quantenzustände ein entscheidender Vorteil.

Originalbeitrag

Arne Barfuss, Jean Teissier, Elke Neu, Andreas Nunnenkamp, Patrick Maletinsky
Strong mechanical driving of a single electron spin
Nature Physics (2015), doi: 10.1038/nphys3411

Weitere Auskünfte

Prof. Patrick Maletinsky, Swiss Nanoscience Institute der Universität Basel, Tel. +41 61 267 37 63, E-Mail: patrick.maletinsky@unibas.ch

Weitere Informationen:

http://dx.doi.org/10.1038/nphys3411 - Abstract

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics