Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenturbo für verlustfreien Strom

08.06.2010
Quanteneffekte verstärken die Supraleitung von Zinn-Nanopartikeln drastisch

Wann ein Metallteilchen den elektrischen Widerstand verliert, ist auch eine Frage seiner Größe. Die Temperatur, unterhalb derer ein Material zu einem Supraleiter wird, kann nämlich drastisch steigen - wenn der Stoff als Nanokügelchen mit bestimmtem Durchmesser vorliegt.

Das haben Forscher des Stuttgarter Max-Planck-Instituts für Festkörperforschung mit Kollegen aus Regensburg und Lissabon nachgewiesen, indem sie Zinn-Nanopartikel mit einem Rastertunnelmikroskop untersuchten. Demnach verstärken Quanteneffekte in den winzigen Teilchen die Supraleitung um bis zu 60 Prozent, aber nur bei "magischen" Größen, die eine Theorie auf den Nanometer genau vorhersagt. Diese Ergebnisse liefern neue Ansatzpunkte, um der verlustfreien Stromleitung auch bei Raumtemperatur näherzukommen. (Nature Materials, Juni 2010)

Mit Materialien, die Strom auch bei sommerlichen Temperaturen noch ohne Widerstand transportieren, ließe sich eine Menge Energie sparen. Supraleiter können das - im Prinzip. Doch die derzeit besten Supraleiter geben ihren Widerstand erst unterhalb von rund minus 170 Grad Celsius auf. Obwohl die Supraleitung bei Raumtemperatur noch immer in weiter Ferne liegt, sind ihr die Forscher des Max-Planck-Instituts für Festkörperforschung ein kleines Stück näher gekommen: Sie haben die kritische Temperatur, unterhalb derer ein Material zum Supraleiter wird, im Labor dramatisch angehoben, indem sie Nanopartikel bestimmter Größe erzeugten.

Die kritische Temperatur steigt - die Physiker sprechen von einer Verstärkung der Supraleitung -, weil die Energiezustände in Nanoteilchen quantisiert sind. In einem größeren Stück des Materials bilden sie dagegen ein breites Band, das sich über das gesamte Material ausdehnt. Für viele Atome ergeben sich nämlich sehr viele dicht beieinander liegende Zustände. Die wenigen Atome in einem Nanoteilchen können dagegen nur eine kleine Zahl von Zuständen besetzen. Die Beschränkung der Quantenzustände ändert die Eigenschaften nanoskopischer Systeme abrupt und oft unvorhergesehen. "In niederdimensionalen Supraleitern ist eine der überraschendsten Konsequenzen, dass Schaleneffekte auftreten, die die Supraleitung verstärken", sagt Klaus Kern, Direktor am Stuttgarter Max-Planck-Institut.

Theoretisch haben Physiker diese Schaleneffekte bereits seit längerem vorhergesagt. Demnach bilden metallische Nanopartikel elektronische Schalen - ähnlich den Schalen, auf denen sich die Elektronen in einzelnen Atomen anordnen. Auch die Elektronen in den Nanopartikeln besetzen nun diese Schalen. Bei bestimmten Anzahlen schließen sich die Elektronen in den Schalen leichter zu Cooper-Paaren zusammen, die sich ohne Widerstand durch das Material bewegen können. Wann sich in den Schalen die ‚magischen’ Anzahl von Elektronen versammeln, hängt auch von der Größe und Form der Partikel ab.

"Die Experimente, um die vorhergesagten Quanteneffekte zu bestätigen, sind extrem anspruchsvoll und erreichen die Grenze des technisch Möglichen", sagt Sangita Bose, die zusammen mit Ivan Brihuega zum ersten Mal untersucht hat, wie die Größe den supraleitenden Zustand individueller Nanopartikel beeinflusst.

Die Forscher haben in einem extrem guten Vakuum zunächst exakte Halbkugeln aus Zinn und Blei gezüchtet, deren Höhen sie gezielt zwischen einem und 50 Nanometern einstellten. Mit einem speziellen Rastertunnelmikroskop, das Forscher des Max-Planck-Instituts entwickelt haben, untersuchten die Physiker anschließend die elektronischen Eigenschaften der Nanoteilchen bei Temperaturen nahe dem absoluten Nullpunkt von rund minus 273 Grad Celsius. Mit sehr hoher Auflösung bestimmten sie für jedes individuelle Teilchen die supraleitende Energielücke. Aus den Energielücken ergeben sich dann die kritischen Temperaturen, bei denen sie Supraleitung auftritt.

Die Experimente zeigten, dass die supraleitende Energielücke der Zinn-Nanopartikel sehr empfindlich auf die Partikelgröße reagiert. Sie nimmt allerdings weder kontinuierlich ab noch steigt sie stetig an, sondern springt vielmehr stark hin und her. "Das sieht zunächst aus wie Rauschen, entspricht aber den Vorhersagen der Theorie", sagt Klaus Kern. Die Größe braucht sich nur um Bruchteile eines Nanometers zu ändern, und schon springt die kritische Temperatur in die Höhe, bevor sie im nächst kleineren Partikel schon wieder drastisch abfällt. Für Blei-Nanopartikel fällt der Effekt weit schwächer aus. In beiden Materialien tritt allerdings überhaupt keine Supraleitung mehr auf, wenn die Partikel kleiner als vier Nanometer sind. "Das wurde zwar bereits vor 50 Jahren theoretisch vorhergesagt, wir haben das aber jetzt zum ersten Mal an einzelnen Partikeln nachgewiesen", sagt Ivan Brihuega.

Um die experimentellen Ergebnisse theoretisch zu unterfüttern, haben Antonio M. García-García, Wissenschaftler am Instituto Superior Technico in Lissabon, und Juan D. Urbina von Universität Regensburg, Korrekturen für die endliche Ausdehnung und Form der Partikel in die Standard-BCS-Theorie für Supraleiter eingeführt. Ihre Berechnungen geben die experimentellen Ergebnisse sehr gut wieder. Sie spiegeln auch wider, dass die Supraleitung mit der Größe der Zinn-Nanopartikel stark variiert. Im Blei tritt der Effekt allerdings kaum auf. "Das unterschiedliche Verhalten der beiden Metalle lässt sich mit der unterschiedlichen Kohärenzlänge erklären, die die räumliche Ausdehnung der Elektronenpaare für die Supraleitung beschreibt", sagt Sangita Bose. Die Kohärenzlänge im Zinn ist viel größer als im Blei, was Zinn weitaus empfindlicher gegenüber Quanteneffekten macht.

Da die quantenmechanischen Schaleneffekte in allen Materialien auftreten, lassen sie sich nutzen, um die Supraleitung in vielen Materialien zu verstärken. "Damit eröffnet das ‚Quanten-Engineering’ durch die gezielte Nanostrukturierung eine völlig neue Perspektive für die Supraleitung und bietet auch vielversprechende technologische Aussichten", so Klaus Kern.

Originalveröffentlichung:

Sangita Bose, Antonio M. García- García, Miguel M. Ugeda, Juan D. Urbina, Christian H. Michaelis, Ivan Brihuega and Klaus Kern
Observation of shell effects in superconducting nanoparticles of Sn
Nature Materials, Juni 2010; DOI: 10.1038/NMAt2768
Weitere Informationen erhalten Sie von:
Prof. Dr. Klaus Kern
Max-Planck-Institut für Festkörperforschung, Stuttgart
Tel.: +49 711 689-1660
E-Mail: k.kern@fkf.mpg.de
Dr. Sangita Bose
Tata Institute of Fundamental Research, Mumbai (Indien)
Tel.: +91 22 2278 2446
E-Mail: sangita.bose@gmail.com

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie