Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenteilchen können Tropfen bilden

24.11.2016

Experimente mit magnetischen Atomen bei extrem tiefen Temperaturen haben eine überraschende Materieform aufgedeckt: Diese Atome formen eine neue Art von Quantenflüssigkeit. Die sogenannten Quantentropfen werden ohne äußere Kräfte allein durch Quanteneffekte zusammengehalten. Innsbrucker Experimentalphysiker und Theoretische Physiker aus Hannover berichten darüber in der Fachzeitschrift Physical Review X.

„Quantentropfen fallen wie ein Stein zu Boden“, schildert Experimentalphysikerin Francesca Ferlaino die überraschende Entdeckung. Mit ihrem Team konnte sie im Labor beobachten, wie sich in einem Quantengas große Tropfen bilden.


Vor dem Kollaps bewahrt: Aufgrund von Quanteneffekten kollabiert das Quantengas nicht, sondern bildet einen flüssigen Quantentropfen.

IQOQI/Harald Ritsch

Völlig überraschend war, dass diese Quantentropfen ohne äußere Unterstützung allein durch Quanteneffekte zusammengehalten werden. Mit dieser Entdeckung ebnen die Innsbrucker Wissenschaftler zeitgleich mit einer Forschungsgruppe der Universität Stuttgart, die mit dem ebenfalls magnetischen Element Dysprosium arbeitet, den Weg in ein völlig neues Forschungsfeld der Physik ultrakalter Quantengase.

Im Experiment erzeugen die Forscherinnen und Forscher zunächst in einer Vakuumkammer bei extrem tiefen Temperaturen ein Bose-Einstein-Kondensat aus Erbium-Atomen. Die Interaktion der Teilchen kontrollieren sie über ein äußeres Magnetfeld. Die besonderen Eigenschaften der magnetischen Atome machen es nun möglich, mit dem Magnetfeld die gewöhnliche Wechselwirkung soweit zu unterdrücken, dass nur noch die Quanteneigenschaften der korrelierten Teilchen zum Tragen kommen.

„Wir stellen das Teilchensystem sozusagen ruhig und verhelfen so den Quanteneigenschaften zur Dominanz“, erklärt Francesca Ferlaino, die mit ihrem Team erstmals eindeutig belegen konnte, dass Quantenfluktuationen für die Abstoßung der Teilchen sorgen und so ausreichend Oberflächenspannung entsteht, die allein einen Quantentropfen zusammenhält.

„In unserem Experiment haben wir zum ersten Mal den kontrollierten Übergang von einem Bose-Einstein-Kondensat, das sich wie ein superfluides Gas verhält, hin zu einem einzelnen großen Quantentropfen aus rund 20.000 Atomen realisiert“, freut sich Experimentalphysikerin die Erstautorin der Studie, Lauriane Chomaz.

Weil die Forscher die Wechselwirkung zwischen den Teilchen in einzigartiger Weise kontrollieren können, war es möglich die experimentellen Daten aus dem Labor mit der von einer Gruppe um Luis Santos an der Universität Hannover entwickelten Theorie zu vergleichen und so die Rolle der Quantenfluktuationen zweifelsfrei nachzuweisen.

Dieser neue suprafluide Zustand ist zwischen gasförmigen Bose-Einstein-Kondensaten und flüssigem Helium angesiedelt. Seine Erforschung könnte in Zukunft zu einem besseren Verständnis von Suprafluidität beitragen. Quantentropfen sind neben Helium das derzeit einzige bekannte System, das suprafluid und flüssig ist. In ultrakalten Quantengasen lässt sich das Phänomen in sehr reiner Form und unter gut kontrollierbaren Bedingungen studieren. Langfristig könnte der Materiezustand sogar Perspektiven für die Untersuchung von Suprasolidität liefern.

Francesca Ferlaino ist Professorin am Institut für Experimentalphysik der Universität Innsbruck und wissenschaftliche Direktorin am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften. Die aktuelle Arbeit entstand in Kooperation mit Theoretikern um Luis Santos von der Universität Hannover und wurde unter anderem von der Deutschen Forschungsgemeinschaft (DFG) unterstützt.

Publikation: Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid. L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino. Phys. Rev. X 6, 041039
http://dx.doi.org/10.1103/PhysRevX.6.041039

Rückfragehinweis:
Francesca Ferlaino
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 512 507 52440
E-Mail: francesca.ferlaino@uibk.ac.at

Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://dx.doi.org/10.1103/PhysRevX.6.041039 - Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid. L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino. Phys. Rev. X 6, 041039
http://www.erbium.at - Dipolar Quantum Gas Group
http://iqoqi.at - Institut für Quantenoptik und Quanteninformation

Dr. Christian Flatz | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

nachricht ESO-Beobachtungen zeigen, dass der erste interstellare Asteroid mit nichts vergleichbar ist, was wir bisher kennen
21.11.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie