Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensimulation: Magnetismus besser verstehen

20.11.2015

Heidelberger Physiker imitieren mit ultrakalten Atomen das Verhalten von Elektronen in einem Festkörper

Einen neuen Ansatz zur Erforschung des Phänomens Magnetismus haben Wissenschaftler der Universität Heidelberg entwickelt. Mithilfe von ultrakalten Atomen nahe dem absoluten Nullpunkt haben sie ein Modell präpariert, mit dem das Verhalten von Elektronen in einem Festkörper simuliert und somit magnetische Eigenschaften untersucht werden können.


Atome (dargestellt in grün und blau) sind in einer Falle aus Laserlicht (rot) gefangen, in welcher sie sich nur entlang einer Raumrichtung bewegen können. Die Atome können entweder nach oben (grün), oder nach unten (blau) ausgerichtet sein, ähnlich der Nadel in einem Kompass. Wenn die Atome nicht miteinander wechselwirken, können sie sich frei in der Falle bewegen (oberes Bild), dabei ist keine Ordnung zu erkennen. Bei starker Abstoßung zwischen den Atomen (unteres Bild), ordnen sie sich selbstständig in der Falle an und zeigen abwechselnd noch oben und nach unten.

Die Erkenntnisse der Forscher um Prof. Dr. Selim Jochim vom Physikalischen Institut sollen zu einem besseren Verständnis fundamentaler Prozesse in Festkörpern beitragen und damit langfristig die Entwicklung neuartiger Materialien ermöglichen. Die Forschungsergebnisse dieser Quantensimulation, die gemeinsam mit Physikern aus Hannover und Lund (Schweden) gewonnen wurden, sind in der Fachzeitschrift „Physical Review Letters“ erschienen.

Magnetismus ist bereits seit mehr als 2.000 Jahren bekannt und wurde schon früh etwa für die Entwicklung des Kompass’ genutzt, dessen Nadeln sich am Magnetfeld der Erde ausrichten. Trotzdem konnten die mikroskopischen Ursachen von Magnetismus erst nach der Entwicklung der Quantenmechanik zu Beginn des 20. Jahrhunderts verstanden werden.

Zu den wichtigsten Erkenntnissen gehörte, dass Elektronen sich in einem Festkörper wie winzige Kompassnadeln verhalten, die sich an einem äußeren Magnetfeld ausrichten und sich außerdem gegenseitig beeinflussen.

Die magnetischen Eigenschaften eines Festkörpers hängen davon ab, wie sich in ihnen benachbarte Elektronen relativ zueinander ausrichten. Bei ferromagnetischen Werkstoffen wie zum Beispiel Eisen zeigen alle Elektronen in die gleiche Richtung. Beim sogenannten Antiferromagnetismus zeigen benachbarte Elektronen in jeweils entgegengesetzte Richtungen.

Für ihre Quantensimulation haben die Heidelberger Physiker nur sehr wenige, nämlich maximal vier Atome verwendet. „Das exakte Präparieren einer so kleinen Anzahl an Atomen ist eine große technische Herausforderung. Es erlaubt uns jedoch, den Zustand der Atome sehr präzise zu kontrollieren“, erläutert Simon Murmann, der der Arbeitsgruppe von Prof. Jochim angehört und sich in seiner gerade abgeschlossenen Doktorarbeit mit dieser Thematik befasst hat.

Die Atome befinden sich dabei in einer Falle aus Laserlicht, die nur die Bewegung in eine Raumrichtung erlaubt. Sie unterliegen ähnlichen fundamentalen Gesetzmäßigkeiten wie Elektronen in einem Festkörper, jedoch können die Physiker die Wechselwirkung zwischen den Atomen präzise kontrollieren. „Anfänglich besteht keine Wechselwirkung zwischen den Atomen.

In diesem Zustand können sie sich ohne Ordnung in der Falle frei bewegen. Wenn wir jedoch eine größere Abstoßung zwischen den Atomen einstellen, kommen die Atome nicht mehr aneinander vorbei und ordnen sich in einer Kette an. In dieser Kette zeigen die Atome immer abwechselnd nach oben und nach unten. Somit wird ein antiferromagnetischer Zustand herbeigeführt“, sagt der Heidelberger Wissenschaftler.

Diese Beobachtung ist für die Forscher von besonderem Interesse, weil Antiferromagnetismus mit physikalischen Phänomenen in Verbindung gebracht wird, die weitreichende Anwendungen ermöglichen könnten.

„So wurde Supraleitung, also der verlustfreie Transport von elektrischen Strömen, bei vergleichsweise hohen Temperaturen von lediglich minus 135 Grad Celsius in antiferromagnetischen Materialien beobachtet“, betont Selim Jochim. „Mit unseren Experimenten wollen wir zum Verständnis fundamentaler Prozesse in Festkörpern beitragen. Eine Vision in diesem Zusammenhang ist die Entwicklung neuer Materialien, die auch bei Raumtemperatur supraleitend bleiben.“

Für ihre Veröffentlichung in den „Physical Review Letters“ erhielten die Heidelberger Wissenschaftler die begehrte „Editors‘ Suggestion“, die Auszeichnung als Empfehlung der Redaktion.

Originalpublikation:
S. Murmann, F. Deuretzbacher, G. Zürn, J. Bjerlin, S. M. Reimann, L. Santos, T. Lompe, S. Jochim: Antiferromagnetic Heisenberg Spin Chain of a Few Cold Atoms in a One-Dimensional Trap. Physical Review Letters (published online on 19 November 2015), doi: 10.1103/PhysRevLett.115.215301

Kontakt:
Prof. Dr. Selim Jochim
Physikalisches Institut
Zentrum für Quantendynamik
Tel. ++49 6221 54-19472
jochim@uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Grabengasse 1
69117 Heidelberg
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://ultracold.physi.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Physiker designen ultrascharfe Pulse
27.07.2017 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie