Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensimulation: Magnetismus besser verstehen

20.11.2015

Heidelberger Physiker imitieren mit ultrakalten Atomen das Verhalten von Elektronen in einem Festkörper

Einen neuen Ansatz zur Erforschung des Phänomens Magnetismus haben Wissenschaftler der Universität Heidelberg entwickelt. Mithilfe von ultrakalten Atomen nahe dem absoluten Nullpunkt haben sie ein Modell präpariert, mit dem das Verhalten von Elektronen in einem Festkörper simuliert und somit magnetische Eigenschaften untersucht werden können.


Atome (dargestellt in grün und blau) sind in einer Falle aus Laserlicht (rot) gefangen, in welcher sie sich nur entlang einer Raumrichtung bewegen können. Die Atome können entweder nach oben (grün), oder nach unten (blau) ausgerichtet sein, ähnlich der Nadel in einem Kompass. Wenn die Atome nicht miteinander wechselwirken, können sie sich frei in der Falle bewegen (oberes Bild), dabei ist keine Ordnung zu erkennen. Bei starker Abstoßung zwischen den Atomen (unteres Bild), ordnen sie sich selbstständig in der Falle an und zeigen abwechselnd noch oben und nach unten.

Die Erkenntnisse der Forscher um Prof. Dr. Selim Jochim vom Physikalischen Institut sollen zu einem besseren Verständnis fundamentaler Prozesse in Festkörpern beitragen und damit langfristig die Entwicklung neuartiger Materialien ermöglichen. Die Forschungsergebnisse dieser Quantensimulation, die gemeinsam mit Physikern aus Hannover und Lund (Schweden) gewonnen wurden, sind in der Fachzeitschrift „Physical Review Letters“ erschienen.

Magnetismus ist bereits seit mehr als 2.000 Jahren bekannt und wurde schon früh etwa für die Entwicklung des Kompass’ genutzt, dessen Nadeln sich am Magnetfeld der Erde ausrichten. Trotzdem konnten die mikroskopischen Ursachen von Magnetismus erst nach der Entwicklung der Quantenmechanik zu Beginn des 20. Jahrhunderts verstanden werden.

Zu den wichtigsten Erkenntnissen gehörte, dass Elektronen sich in einem Festkörper wie winzige Kompassnadeln verhalten, die sich an einem äußeren Magnetfeld ausrichten und sich außerdem gegenseitig beeinflussen.

Die magnetischen Eigenschaften eines Festkörpers hängen davon ab, wie sich in ihnen benachbarte Elektronen relativ zueinander ausrichten. Bei ferromagnetischen Werkstoffen wie zum Beispiel Eisen zeigen alle Elektronen in die gleiche Richtung. Beim sogenannten Antiferromagnetismus zeigen benachbarte Elektronen in jeweils entgegengesetzte Richtungen.

Für ihre Quantensimulation haben die Heidelberger Physiker nur sehr wenige, nämlich maximal vier Atome verwendet. „Das exakte Präparieren einer so kleinen Anzahl an Atomen ist eine große technische Herausforderung. Es erlaubt uns jedoch, den Zustand der Atome sehr präzise zu kontrollieren“, erläutert Simon Murmann, der der Arbeitsgruppe von Prof. Jochim angehört und sich in seiner gerade abgeschlossenen Doktorarbeit mit dieser Thematik befasst hat.

Die Atome befinden sich dabei in einer Falle aus Laserlicht, die nur die Bewegung in eine Raumrichtung erlaubt. Sie unterliegen ähnlichen fundamentalen Gesetzmäßigkeiten wie Elektronen in einem Festkörper, jedoch können die Physiker die Wechselwirkung zwischen den Atomen präzise kontrollieren. „Anfänglich besteht keine Wechselwirkung zwischen den Atomen.

In diesem Zustand können sie sich ohne Ordnung in der Falle frei bewegen. Wenn wir jedoch eine größere Abstoßung zwischen den Atomen einstellen, kommen die Atome nicht mehr aneinander vorbei und ordnen sich in einer Kette an. In dieser Kette zeigen die Atome immer abwechselnd nach oben und nach unten. Somit wird ein antiferromagnetischer Zustand herbeigeführt“, sagt der Heidelberger Wissenschaftler.

Diese Beobachtung ist für die Forscher von besonderem Interesse, weil Antiferromagnetismus mit physikalischen Phänomenen in Verbindung gebracht wird, die weitreichende Anwendungen ermöglichen könnten.

„So wurde Supraleitung, also der verlustfreie Transport von elektrischen Strömen, bei vergleichsweise hohen Temperaturen von lediglich minus 135 Grad Celsius in antiferromagnetischen Materialien beobachtet“, betont Selim Jochim. „Mit unseren Experimenten wollen wir zum Verständnis fundamentaler Prozesse in Festkörpern beitragen. Eine Vision in diesem Zusammenhang ist die Entwicklung neuer Materialien, die auch bei Raumtemperatur supraleitend bleiben.“

Für ihre Veröffentlichung in den „Physical Review Letters“ erhielten die Heidelberger Wissenschaftler die begehrte „Editors‘ Suggestion“, die Auszeichnung als Empfehlung der Redaktion.

Originalpublikation:
S. Murmann, F. Deuretzbacher, G. Zürn, J. Bjerlin, S. M. Reimann, L. Santos, T. Lompe, S. Jochim: Antiferromagnetic Heisenberg Spin Chain of a Few Cold Atoms in a One-Dimensional Trap. Physical Review Letters (published online on 19 November 2015), doi: 10.1103/PhysRevLett.115.215301

Kontakt:
Prof. Dr. Selim Jochim
Physikalisches Institut
Zentrum für Quantendynamik
Tel. ++49 6221 54-19472
jochim@uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Grabengasse 1
69117 Heidelberg
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://ultracold.physi.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics