Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensimulation 2.0: Atome in Fernbeziehungen

08.04.2016

Ein Team um die Experimentalphysikerin Francesca Ferlaino und den Theoretiker Peter Zoller hat erstmals in einem optischen Gitter die magnetische Wechselwirkung zwischen weit auseinanderliegenden, ultrakalten Teilchen gemessen. Mit der in dieser Woche in der Fachzeitschrift Science publizierten Arbeit eröffnen die Forscherinnen und Forscher eine neue Dimension der Quantensimulation.

Simulationen sind ein beliebtes Werkzeug, um Probleme, die durch Experimente nicht zugänglich sind, im Detail zu studieren. So können viele physikalische Prozesse in Materialien bis heute nicht untersucht werden.


Mit einem Magnetfeld kann die Ausrichtung der vielen Minimagneten direkt verändern und damit sehr genau gesteuert werden, wie die Teilchen miteinander wechselwirken.

Erbium-Team/Simon Baier

Die Materialeigenschaften werden von den Wechselwirkungen einzelner Teilchen bestimmt und diese können nicht direkt gemessen werden. Da klassische Computer bei solch komplexen Simulationen rasch an ihre Grenzen stoßen, hat Richard Feynman bereits Anfang der 1980er-Jahre vorgeschlagen, diese Probleme in einem Quantensystem zu simulieren.

Ignacio Cirac und Peter Zoller präsentierten vor zwei Jahrzehnten konkrete Konzepte, wie Quantenprobleme mit ultrakalten Atomen in einem optischen Gitter erforscht werden können. Diese Idee hat sich in den vergangenen Jahren sehr bewährt und eine breite experimentelle Anwendung gefunden.

„Wir können die ultrakalten Teilchen im Labor sehr gut kontrollieren und erhalten so einen großartigen Einblick in deren physikalische Eigenschaften“, erzählt Francesca Ferlaino vom Institut für Experimentalphysik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften.

Gemeinsam mit Theoretikern um Peter Zoller hat ihr Team diesen Ansatz für Quantensimulationen einem weiteren wichtigen Test unterzogen und damit die Forschung einen wesentlichen Schritt vorangebracht. Die Physiker bestimmten erstmals quantitativ die langreichweitige Wechselwirkung zwischen magnetischen Atomen.

Experimentierkasten für Materie

Alle bisherigen Arbeiten waren auf die Wechselwirkung von Teilchen beschränkt, die sehr nahe beieinanderliegen. „Wir arbeiten aber mit stark magnetischen Atomen, welche wir auch über große Distanzen aufeinander wirken lassen können“, sagt Mitautor Manfred Mark. Zunächst erzeugen die Physiker im Labor ein Bose-Einstein-Kondensat aus Erbiumatomen und laden es in ein dreidimensionales Gitter aus Laserstrahlen, das wie ein künstlicher Kristall aus Licht funktioniert.

In diesem simulierten Festkörperkristall ordnen sich die Teilchen wie in einem Eierkarton an. Im Innsbrucker Experiment liegen die Teilchen etwa das Siebenfache der Ausdehnung ihrer Wellenfunktion voneinander entfernt. „Mit einem Magnetfeld können wir die Ausrichtung der vielen Minimagneten direkt verändern und damit sehr genau steuern, wie die Teilchen miteinander wechselwirken – ob sie sich anziehen oder abstoßen“, erläutert Erstautor Simon Baier.

Suche nach exotischen Quantenphasen

„Die Zusammenarbeit mit Peter Zoller, Cai Zi und Mikhail Baranov war enorm wichtig, um unsere Messergebnisse umfassend zu verstehen“, betont Francesca Ferlaino. „Unsere Arbeit ist ein weiterer Schritt für ein besseres Verständnis der Materie, denn die Verhältnisse sind hier wesentlich komplizierter als in bisher untersuchten ultrakalten Quantengasen.“

Das Experiment ist auch ein wichtiger Schritt auf der Suche nach exotischen Quantenphasen wie Schachbrett- oder Streifenmuster, die durch diese langreichweitigen Wechselwirkungen entstehen können. „Unsere Arbeit ebnet den Weg, um solche Phasen bald messen zu können“, blickt Simon Baier bereits in die Zukunft. „Auch in unserem Experiment sollte dies grundsätzlich möglich sein. Dafür müssen wir die Atome aber noch weiter abkühlen – von momentan 70nK auf etwa 2nK.“

Finanziell unterstützt wurden die Forschungen unter anderem vom österreichischen Wissenschaftsfonds FWF und dem europäischen Forschungsrat ERC.

Publikation: Extended Bose-Hubbard models with ultracold magnetic atoms. S. Baier, M. J. Mark, D. Petter, K. Aikawa, L. Chomaz, Z. Cai, M. Baranov, P. Zoller, F. Ferlaino. Science 2016
DOI: 10.1126/science.aac9812

Rückfragehinweis:
Univ.-Prof. Dr. Francesca Ferlaino
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 676 872552440
E-Mail: francesca.ferlaino@uibk.ac.at
Web: http://www.erbium.at

Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://www.erbium.at - Dipolar Quantum Gas Group
http://iqoqi.at - Institut für Quantenoptik und Quanteninformation
http://www.uibk.ac.at/exphys/ - Institut für Experimentalphysik, Universität Innsbruck

Dr. Christian Flatz | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics