Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenkommunikation: Jedes Photon zählt

21.01.2013
Ultraschnelle, effiziente und zuverlässige Einzelphotonendetektoren sind begehrte und dennoch bis heute noch nicht anwendungsreife Komponenten in der Photonik und der Quantenkommunikation.
Der Quantenphotoniker Dr. Wolfram Pernice vom Karlsruher Institut für Technologie (KIT) erzielte nun in Zusammenarbeit mit Kollegen der Universitäten Yale, Boston und Moscow State Pedagogical den entscheidenden Durchbruch mit einem direkt in den Chip integrierten Einzelphotonendetektor. Der Detektor schafft gleichzeitig höchste Wiedergabetreue und Auswertungsgeschwindigkeit und hat eine nur sehr geringe Fehlerquote. Die Ergebnisse sind in Nature Communications veröffentlicht (doi:10.1038/ncomms2307).

Ohne eine zuverlässige Detektion, also einer sicheren und schnellen Erfassung einzelner Photonen, lassen sich die neuesten Weiterentwicklungen im Bereich der optischen Datenübertragung oder der Quantencomputer nicht wirklich nutzen. Das ist, als ob man bei einem herkömmlichen Rechner keinen Analog-Digital-Wandler hätte, um zu erkennen, ob die anliegende Spannung für eine 0 oder 1 steht. Obwohl in den vergangenen Jahren bereits verschiedene Modelle von Einzelphotonendetektoren entwickelt wurden, konnte bislang keiner wirklich zufriedenstellend eingesetzt werden.

Gleich mehrere neue Ideen und Weiterentwicklungen flossen in den im Rahmen des Projekts „Integrated Quantum-Photonics“ am DFG-Centrum für funktionelle Nanostrukturen (CFN) entwickelten Prototypen ein. Der neue im Wellenlängenbereich der Telekommunikation erprobte Einzelphotonendetektor erreicht eine Entdeckungseffizienz von 91 Prozent. Dieses Niveau war bisher unerreicht.

Fünf Faktoren überzeugen beim neuen Einzelphotonendetektor: 91% Entdeckungseffizienz, direkte Integration auf dem Chip, Zählraten im Gigahertztempo, hohe zeitliche Auflösung und vernachlässigbare Dunkelzählraten

Quelle: KIT/CFN

Der Clou sind die supraleitenden Nanodrahtdetektoren, die direkt auf einem nanophotonischen Wellenleiter aufgebracht werden. Bildlich darf man sich das wie eine lichtleitende Röhre vorstellen, um die ein Draht gewickelt ist, der sich im supraleitenden Zustand befindet und deswegen keinerlei elektrischen Widerstand aufweist. Der nanometerdünne Draht aus Niobnitrid absorbiert Photonen, die sich entlang des Wellenleiters ausbreiten. Wird ein Photon absorbiert, kommt es zum Verlust der Supraleitung, was sich als elektrisches Signal bemerkbar macht. Je länger diese Röhre ist, desto größer ist die Detektionswahrscheinlichkeit - dabei handelt es sich von Längen im Mikrometerbereich.

Eine weitere Besonderheit des Detektors ist, dass er direkt auf dem Chip installiert ist und somit beliebig vervielfältigt werden kann. Die bisher realisierten Einzelphotonendetektoren waren eigenständige Einheiten, die „vor den Chip geschaltet“ wurden. Eine solche Anordnung hat den großen Nachteil, dass Photonen in der zusätzlich benötigten Faserverbindung verloren gehen oder anderweitig absorbiert werden. Bei dem nun vollständig in den Silizium-Schaltkreis für Photonen eingebetteten Detektor entfällt diese Verlustquelle. Das führt neben der hohen Entdeckungseffizienz zu einer bemerkenswert niedrigen Dunkelzählrate. Bei einer Dunkelzählung handelt es sich um ein fälschlich detektiertes Photon, beispielsweise infolge einer spontanen Emission, eines Alphateilchens oder eines Störfeldes. Die Konstruktion ermöglicht auch eine ultrakurze Genauigkeitsschwankung von 18 Picosekunden, also 18 mal 10^-12 Sekunden, bei der Übertragung der Datensignale.

Die neuartige Lösung ermöglicht es darüber hinaus, mehrere Hunderte dieser Detektoren auf einem einzelnen Chip zu integrieren. Dies ist eine Grundvoraussetzung für die künftige Nutzung in optischen Quantenrechnern.

Der in dieser Studie demonstrierte Detektor wurde mithilfe von Wellenlängen in Telekom-Bandbreite analysiert. Dieselbe Detektorarchitektur kann aber auch für Wellenlängen im Bereich des sichtbaren Licht eingesetzt werden. Damit könnte das Prinzip für die Analyse all solcher Strukturen eingesetzt werden, die wenig Licht – also Photonen – emittieren, beispielsweise einzelne Moleküle oder Bakterien.
Vita Dr. Wolfram Pernice

Dr. Wolfram Pernice studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg. Aufgrund seiner herausragenden Studienleistung wurde der e-Fellow während seiner Studienzeit durch ein Baden-Württemberg-Stipendium gefördert. Ausgestattet mit einem Forschungsstipendium des britischen Engineering and Physical Sciences Research Council promovierte er anschließend in England an der Universität von Oxford über die Entwicklung von effizienten numerischen Methoden für die Simulation photonischer Geräte. Nach der Erlangung seines Doktorgrades im Jahr 2007 wechselte er Anfang 2008 von England in die USA an die Yale University, wo er in der Gruppe von Hong Tang - mit einem Humboldt-Stipendium gefördert - nanooptomechanische Systeme analysierte. Im Sommer 2011 erhielt Pernice die Zusage der Deutschen Forschungsgemeinschaft für die Leitung einer Emmy-Noether Nachwuchsgruppe. Seine Forschungsarbeit über integrierte quantenoptische und nanooptomechanische Systeme hatte die Kommission überzeugt. Als Emmy-Noether-Stipendiant konnte er sich seinen neuen Wirkungsort aussuchen und entschied sich für das Karlsruher Institut für Technologie (KIT). Hier ist er nun seit Oktober 2011 Nachwuchsgruppenleiter am Institut für Nanotechnologie (INT). Aktuell konnte er zum Jahresanfang für seine internationale Forschungsarbeit zusätzlich eine ‚Helmholtz International Research Groups‘-Unterstützung einwerben, die er dafür nutzen möchte, sein Karlsruher Team um einen weiteren Doktoranden zu ergänzen.
Das DFG-Centrum für Funktionelle Nanostrukturen (CFN) hat sich einem wichtigen Bereich der Nanotechnologie verschrieben: den funktionellen Nanostrukturen. Ziel ist es durch exzellente interdisziplinäre und internationale Forschung Nano-Strukturen mit neuen technologischen Funktionen darzustellen sowie den ersten Schritt von der Grundlagenforschung zur Anwendung zu gehen. Zurzeit arbeiten in Karlsruhe mehr als 250 Wissenschaftler und Techniker über das CFN vernetzt in mehr als 80 Teilprojekten zusammen. Der Fokus liegt auf den Bereichen Nano-Photonik, Nano-Elektronik, Molekulare Nanostrukturen, Nano-Biologie und Nano-Energie. http://www.cfn.kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Tatjana Erkert
DFG-Centrum für Funktionelle
Nanostrukturen (CFN)
http://www.cfn.kit.edu
Tel.: +49 721 608-43409
Fax: +49 721 608-48496
E-Mail: tatjana.erkert@kit.edu

Monika Landgraf | idw
Weitere Informationen:
http://www.cfn.kit.edu

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die „dunkle“ Seite der Spin-Physik
16.01.2018 | Technische Universität Berlin

nachricht Blick ins Universum
15.01.2018 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften