Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantencomputer: Wenn Photonen rechnen lernen

13.05.2013
Auf dem Weg zu einer immer effektiveren Informationsverarbeitung gelten Quantencomputer als äußerst aussichtsreiche Kandidaten.

Wissenschaftlern aus der Forschungsgruppe von Philip Walther von der Fakultät für Physik an der Universität Wien ist es gelungen, einen neuen und hocheffizienten Prototypen eines Quantencomputers zu bauen – einen Bosonen Sampling Computer. In der kommenden Ausgabe von "Nature Photonics" werden die Ergebnisse veröffentlicht.


Bild des optischen Netzwerks – der zentrale Teil des Wiener Bosonen Sampling Computers. Im Bild wird erkennbar, wie die Photonen gemäß den Gesetzen der Quantenphysik verschiedene Wege gleichzeitig zu nehmen scheinen. Copyright: Philip Walther Gruppe, Universität Wien

Quantencomputer basieren auf der Manipulation von einzelnen Quantenobjekten wie Photonen, Elektronen oder Atomen. Dabei helfen ihnen Quanteneffekte, nicht nur bestimmte Rechenaufgaben wesentlich schneller zu verarbeiten als klassische Computer, sondern sogar Aufgaben zu lösen, die selbst einen Supercomputer überfordern. Die dafür benötigte Quantentechnologie hat sich in den letzten Jahren immens weiterentwickelt, doch es ist immer noch eine große Herausforderung, einen marktreifen Quantencomputer zu bauen. Eine spannende offene Frage ist dabei, welche Quantenobjekte sich für die Umsetzung am besten eignen, da bestimmte Quantenobjekte individuelle Vorteile besitzen.

Mit Licht(geschwindigkeit) rechnen

Photonen, eine bestimmte Art von Bosonen, bewegen sich mit Lichtgeschwindigkeit über weite Strecken, ohne dabei ihre Information zu verlieren. Diesen einzigartigen Vorteil der Photonen nutzten Wissenschaftler von der Universität Wien in Zusammenarbeit mit Forschern der Universität Jena (Deutschland) aus, um den Prototyp eines Bosonen Sampling Computers zu bauen. Hierbei werden Photonen in ein kompliziertes optisches Netzwerk geschickt, in welchem es viele verschiedene Möglichkeiten gibt, zu einem bestimmten Ausgang zu gelangen. Philip Walther von der Fakultät für Physik erklärt: "Da die Photonen den Gesetzen der Quantenphysik gehorchen, scheinen sie alle möglichen Wege gleichzeitig zu nehmen. Das nennt man Superposition. Das Rechenergebnis dieses Quantencomputers lässt sich erstaunlich einfach auslesen: Man misst, wie viele Photonen das optische Netzwerk durch welchen Ausgang verlassen."

Wie man einen Supercomputer übertrumpfen kann

Klassische Computer müssten für diese Berechnung eine exakte Beschreibung des optischen Netzwerks kennen. Sogar ein Supercomputer wäre bereits damit überfordert, die Bewegung von ein paar Dutzend Photonen durch ein optisches Netzwerk mit nur einigen hundert Ein- und Ausgängen zu berechnen. Für einen Bosonen Sampling Computer ist dies hingegen kein Problem. Die Forscher treten nun mit ihrem Prototyp, welcher auf theoretischen Überlegungen von Wissenschaftlern des Massachusetts Institute of Technology (USA) basiert, diesen Beweis an. "Es ist äußerst wichtig sich zu vergewissern, ob ein solcher Quantencomputer erwartungsgemäß funktioniert. Deswegen vergleichen wir das experimentelle Ergebnis mit den Vorhersagen der Quantenphysik. Ironischerweise kann man diese Vorhersagen nur auf einem klassischen Computer berechnen und für kleinere Systeme ist dies zum Glück noch möglich", betont Max Tillmann, Erstautor der Veröffentlichung. Auf diese Weise konnten die Wissenschaftler zeigen, dass der von ihnen realisierte Bosonen Sampling Computer mit hoher Präzision arbeitet. Die viel versprechenden Ergebnisse könnten wegweisend sein, um klassische Supercomputer in naher Zukunft zu übertrumpfen.
Publikation:

Experimental Boson Sampling. Max Tillmann, Borivoje Dakiæ, René Heilmann, Stefan Nolte, Alexander Szameit, Philip Walther. Nature Photonics/Advanced Online Publication: 12. Mai 2013; Druckausgabe: Juli 2013
DOI: 10.1038/NPHOTON.2013.102

Verwandte experimentelle Arbeiten von A. Crespi et al. werden in derselben Ausgabe publiziert.

Wissenschaftlicher Kontakt
Max Tillmann
Quantenoptik, Quantennanophysik & Quanteninformation
Fakultät für Physik, Universität Wien
Quantum Information Science and Quantum Computation
1090 Wien, Boltzmanngasse 5
T +43-1-4277-72567
max.tillmann@univie.ac.at
http://www.quantum.at/
http://walther.quantum.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-60277-175 33
alexandra.frey@univie.ac.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at
http://www.quantum.at/
http://walther.quantum.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen