Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantencomputer: Wenn Photonen rechnen lernen

13.05.2013
Auf dem Weg zu einer immer effektiveren Informationsverarbeitung gelten Quantencomputer als äußerst aussichtsreiche Kandidaten.

Wissenschaftlern aus der Forschungsgruppe von Philip Walther von der Fakultät für Physik an der Universität Wien ist es gelungen, einen neuen und hocheffizienten Prototypen eines Quantencomputers zu bauen – einen Bosonen Sampling Computer. In der kommenden Ausgabe von "Nature Photonics" werden die Ergebnisse veröffentlicht.


Bild des optischen Netzwerks – der zentrale Teil des Wiener Bosonen Sampling Computers. Im Bild wird erkennbar, wie die Photonen gemäß den Gesetzen der Quantenphysik verschiedene Wege gleichzeitig zu nehmen scheinen. Copyright: Philip Walther Gruppe, Universität Wien

Quantencomputer basieren auf der Manipulation von einzelnen Quantenobjekten wie Photonen, Elektronen oder Atomen. Dabei helfen ihnen Quanteneffekte, nicht nur bestimmte Rechenaufgaben wesentlich schneller zu verarbeiten als klassische Computer, sondern sogar Aufgaben zu lösen, die selbst einen Supercomputer überfordern. Die dafür benötigte Quantentechnologie hat sich in den letzten Jahren immens weiterentwickelt, doch es ist immer noch eine große Herausforderung, einen marktreifen Quantencomputer zu bauen. Eine spannende offene Frage ist dabei, welche Quantenobjekte sich für die Umsetzung am besten eignen, da bestimmte Quantenobjekte individuelle Vorteile besitzen.

Mit Licht(geschwindigkeit) rechnen

Photonen, eine bestimmte Art von Bosonen, bewegen sich mit Lichtgeschwindigkeit über weite Strecken, ohne dabei ihre Information zu verlieren. Diesen einzigartigen Vorteil der Photonen nutzten Wissenschaftler von der Universität Wien in Zusammenarbeit mit Forschern der Universität Jena (Deutschland) aus, um den Prototyp eines Bosonen Sampling Computers zu bauen. Hierbei werden Photonen in ein kompliziertes optisches Netzwerk geschickt, in welchem es viele verschiedene Möglichkeiten gibt, zu einem bestimmten Ausgang zu gelangen. Philip Walther von der Fakultät für Physik erklärt: "Da die Photonen den Gesetzen der Quantenphysik gehorchen, scheinen sie alle möglichen Wege gleichzeitig zu nehmen. Das nennt man Superposition. Das Rechenergebnis dieses Quantencomputers lässt sich erstaunlich einfach auslesen: Man misst, wie viele Photonen das optische Netzwerk durch welchen Ausgang verlassen."

Wie man einen Supercomputer übertrumpfen kann

Klassische Computer müssten für diese Berechnung eine exakte Beschreibung des optischen Netzwerks kennen. Sogar ein Supercomputer wäre bereits damit überfordert, die Bewegung von ein paar Dutzend Photonen durch ein optisches Netzwerk mit nur einigen hundert Ein- und Ausgängen zu berechnen. Für einen Bosonen Sampling Computer ist dies hingegen kein Problem. Die Forscher treten nun mit ihrem Prototyp, welcher auf theoretischen Überlegungen von Wissenschaftlern des Massachusetts Institute of Technology (USA) basiert, diesen Beweis an. "Es ist äußerst wichtig sich zu vergewissern, ob ein solcher Quantencomputer erwartungsgemäß funktioniert. Deswegen vergleichen wir das experimentelle Ergebnis mit den Vorhersagen der Quantenphysik. Ironischerweise kann man diese Vorhersagen nur auf einem klassischen Computer berechnen und für kleinere Systeme ist dies zum Glück noch möglich", betont Max Tillmann, Erstautor der Veröffentlichung. Auf diese Weise konnten die Wissenschaftler zeigen, dass der von ihnen realisierte Bosonen Sampling Computer mit hoher Präzision arbeitet. Die viel versprechenden Ergebnisse könnten wegweisend sein, um klassische Supercomputer in naher Zukunft zu übertrumpfen.
Publikation:

Experimental Boson Sampling. Max Tillmann, Borivoje Dakiæ, René Heilmann, Stefan Nolte, Alexander Szameit, Philip Walther. Nature Photonics/Advanced Online Publication: 12. Mai 2013; Druckausgabe: Juli 2013
DOI: 10.1038/NPHOTON.2013.102

Verwandte experimentelle Arbeiten von A. Crespi et al. werden in derselben Ausgabe publiziert.

Wissenschaftlicher Kontakt
Max Tillmann
Quantenoptik, Quantennanophysik & Quanteninformation
Fakultät für Physik, Universität Wien
Quantum Information Science and Quantum Computation
1090 Wien, Boltzmanngasse 5
T +43-1-4277-72567
max.tillmann@univie.ac.at
http://www.quantum.at/
http://walther.quantum.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-60277-175 33
alexandra.frey@univie.ac.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at
http://www.quantum.at/
http://walther.quantum.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie