Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Planetenjäger CARMENES erfolgreich getestet

18.12.2015

Heidelberger Astronomen sind maßgeblich an Konstruktion und Betrieb des hochkomplexen Messgerätes beteiligt

Ein neuartiges astronomisches Messgerät, mit dessen Hilfe erdähnliche Planeten aufgespürt werden sollen, ist erfolgreich im Praxiseinsatz getestet worden. Nach fünfjährigen Vorarbeiten kam CARMENES im November dieses Jahres am 3,5-Meter-Spiegelteleskop des Calar Alto Observatoriums nahe Almería in Südspanien zum Einsatz.


Foto: Max-Planck-Institut für Astronomie, Heidelberg

Das 3,5-Meter-Spiegelteleskop auf dem spanischen Berg Calar-Alto. CARMENES ist an diesem Teleskop installiert und wird 2016 damit beginnen, nach erdähnlichen Planeten bei anderen Sternen zu suchen.

Das hochkomplexe Instrument CARMENES wurde von einem internationalen Konsortium aus elf deutschen und spanischen Institutionen geplant und gebaut; an Konstruktion und Betrieb sind Wissenschaftler des Zentrums für Astronomie der Universität Heidelberg (ZAH) maßgeblich beteiligt. Das Messgerät besteht aus zwei Spektrographen, die das sichtbare und infrarote Licht von astronomischen Objekten analysieren können; sie wurden für die Entdeckung von Planeten naher Sterne optimiert.

„Mit der Suche nach Planeten außerhalb unseres Sonnensystems wollen wir verstehen, wie und wo diese Himmelskörper entstanden sind und ob sie lebensfreundliche Bedingungen bieten. Inzwischen wurden schon etwa 2.000 entdeckt. Allerdings sind die meisten von ihnen eher lebensfeindlich“, erläutert der Leiter des CARMENES-Projekts, Prof. Dr. Andreas Quirrenbach, Direktor des Landessternwarte Königstuhl im ZAH.

Vielversprechend sind dagegen Planeten, die um sogenannte M-Sterne kreisen. Dabei handelt es sich um kleinere und leuchtschwächere Sterne, die Planeten mit sternnahen Bahnen „angenehme“ Temperaturen bieten. Weil M-Sterne viel kühler sind als die Sonne, senden sie ihr Licht hauptsächlich im nah-infraroten Bereich des elektromagnetischen Spektrums aus. Deshalb konstruierten die Forscher einen Spektrographen, der für dieses Infrarotlicht empfindlich ist – derzeit ist kein anderes Instrument dazu in der Lage, wie Prof. Quirrenbach betont.

Auf Himmelsaufnahmen ist der direkte Nachweis von Planeten jedoch sehr schwierig, da sie von ihren Muttersternen überstrahlt werden, die eine Milliarde Mal heller sind und sich zudem ganz in der Nähe befinden. Um Planeten aufzuspüren, macht sich die Wissenschaft daher die Wirkung der Schwerkraft zunutze, die ein Planet auf seinen Stern ausübt.

Stern und Planet umkreisen sich wie Eiskunstläufer, die sich gegenseitig die Hände reichen und umeinander rotieren. Ist aber einer der Läufer sehr klein und leicht, dann dreht sich der größere und schwerere fast genau um seine eigene Achse und bewegt sich nur noch wenig auf den Zuschauer zu oder von ihm weg.

Im Falle von Sternen und Planeten ist der Massenunterschied so gewaltig, dass sich der Stern nur mit einer „Fußgängergeschwindigkeit“ von wenigen Metern pro Sekunde bewegt. Im Gegensatz dazu beträgt die Geschwindigkeit des Planeten viele Kilometer pro Sekunde. Es ist aber die langsame Bewegung des Sterns, die durch die sogenannte Doppler-Verschiebung von dunklen Linien im Sternspektrum die Existenz des Planeten verrät.

Diese periodische Änderung der Spektralfarbe des Sterns wird durch die abwechselnde Bewegung des Sterns auf den Beobachter zu und wieder von ihm weg verursacht. „Durch seine ausgeklügelte Technologie und extrem hohe Stabilität kann CARMENES diese kleinen Bewegungen messen“, sagt Dr. Walter Seifert, Astronom an der Landessternwarte Königstuhl und verantwortlich für die Konstruktion des visuellen Spektrographen.

Durch die Kombination der Daten beider Spektrographen erhalten die Wissenschaftler erheblich mehr Informationen als mit ähnlichen Vorgängerinstrumenten. Prof. Quirrenbach rechnet damit, dass CARMENES in den kommenden Jahren dutzende Planeten außerhalb unseres Sonnensystems in der sogenannten habitablen Zone entdecken wird.

In den vergangenen Wochen wurde die Funktion des Messinstruments im eingebauten Zustand optimiert. Die Forscher erwarten, dass CARMENES bereits im Januar 2016 mit den wissenschaftlichen Beobachtungen beginnen kann. Innerhalb von voraussichtlich fünf Jahre sollen alle notwendigen Daten gesammelt und ausgewertet sein.

Am CARMENES-Projekt sind auf deutscher Seite die Landessternwarte Königstuhl im Zentrum für Astronomie der Universität Heidelberg, das Max-Planck-Institut für Astronomie in Heidelberg, die Thüringer Landessternwarte Tautenburg, das Institut für Astrophysik der Universität Göttingen und die Sternwarte der Universität Hamburg beteiligt.

Auf spanischer Seite sind dies das Instituto de Astrofísica de Andalucía in Granada, das Institut de Ciències de l'Espai in Barcelona, das Departamento de Astrofísica der Universidad Complutense de Madrid, das Instituto de Astrofísica de Canarias auf Teneriffa und das Centro de Astrobiología in Madrid. Eingebunden ist außerdem das deutsch-spanische Centro Astronómico Hispano-Alemán in Calar Alto.

CARMENES wird finanziert von der Max-Planck-Gesellschaft, dem Consejo Superior de Investigaciones Científicas und den Mitgliedern des CARMENES-Konsortiums. Weitere Unterstützung kommt vom spanischen Forschungsministerium, dem Land Baden-Württemberg, der Deutschen Forschungsgemeinschaft, der Klaus Tschira Stiftung, der Regierung von Andalusien und von der Europäischen Union durch den Europäischen Fonds für Regionale Entwicklung.

Kontakt:
Prof. Dr. Andreas Quirrenbach
Landessternwarte, Zentrum für Astronomie der Universität Heidelberg (ZAH)
Telefon (06221) 54-1792
A.Quirrenbach@lsw.uni-heidelberg.de

Dr. Holger Mandel
Landessternwarte, Zentrum für Astronomie der Universität Heidelberg (ZAH)
Telefon (06221) 54-1734
H.Mandel@lsw.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

https://carmenes.caha.es
http://www.lsw.uni-heidelberg.de
http://www.zah.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Alto Astronomie Klaus Tschira Stiftung Landessternwarte Planet Spektrographen ZAH

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten