Planetenjäger CARMENES erfolgreich getestet

Foto: Max-Planck-Institut für Astronomie, Heidelberg Das 3,5-Meter-Spiegelteleskop auf dem spanischen Berg Calar-Alto. CARMENES ist an diesem Teleskop installiert und wird 2016 damit beginnen, nach erdähnlichen Planeten bei anderen Sternen zu suchen.

Ein neuartiges astronomisches Messgerät, mit dessen Hilfe erdähnliche Planeten aufgespürt werden sollen, ist erfolgreich im Praxiseinsatz getestet worden. Nach fünfjährigen Vorarbeiten kam CARMENES im November dieses Jahres am 3,5-Meter-Spiegelteleskop des Calar Alto Observatoriums nahe Almería in Südspanien zum Einsatz.

Das hochkomplexe Instrument CARMENES wurde von einem internationalen Konsortium aus elf deutschen und spanischen Institutionen geplant und gebaut; an Konstruktion und Betrieb sind Wissenschaftler des Zentrums für Astronomie der Universität Heidelberg (ZAH) maßgeblich beteiligt. Das Messgerät besteht aus zwei Spektrographen, die das sichtbare und infrarote Licht von astronomischen Objekten analysieren können; sie wurden für die Entdeckung von Planeten naher Sterne optimiert.

„Mit der Suche nach Planeten außerhalb unseres Sonnensystems wollen wir verstehen, wie und wo diese Himmelskörper entstanden sind und ob sie lebensfreundliche Bedingungen bieten. Inzwischen wurden schon etwa 2.000 entdeckt. Allerdings sind die meisten von ihnen eher lebensfeindlich“, erläutert der Leiter des CARMENES-Projekts, Prof. Dr. Andreas Quirrenbach, Direktor des Landessternwarte Königstuhl im ZAH.

Vielversprechend sind dagegen Planeten, die um sogenannte M-Sterne kreisen. Dabei handelt es sich um kleinere und leuchtschwächere Sterne, die Planeten mit sternnahen Bahnen „angenehme“ Temperaturen bieten. Weil M-Sterne viel kühler sind als die Sonne, senden sie ihr Licht hauptsächlich im nah-infraroten Bereich des elektromagnetischen Spektrums aus. Deshalb konstruierten die Forscher einen Spektrographen, der für dieses Infrarotlicht empfindlich ist – derzeit ist kein anderes Instrument dazu in der Lage, wie Prof. Quirrenbach betont.

Auf Himmelsaufnahmen ist der direkte Nachweis von Planeten jedoch sehr schwierig, da sie von ihren Muttersternen überstrahlt werden, die eine Milliarde Mal heller sind und sich zudem ganz in der Nähe befinden. Um Planeten aufzuspüren, macht sich die Wissenschaft daher die Wirkung der Schwerkraft zunutze, die ein Planet auf seinen Stern ausübt.

Stern und Planet umkreisen sich wie Eiskunstläufer, die sich gegenseitig die Hände reichen und umeinander rotieren. Ist aber einer der Läufer sehr klein und leicht, dann dreht sich der größere und schwerere fast genau um seine eigene Achse und bewegt sich nur noch wenig auf den Zuschauer zu oder von ihm weg.

Im Falle von Sternen und Planeten ist der Massenunterschied so gewaltig, dass sich der Stern nur mit einer „Fußgängergeschwindigkeit“ von wenigen Metern pro Sekunde bewegt. Im Gegensatz dazu beträgt die Geschwindigkeit des Planeten viele Kilometer pro Sekunde. Es ist aber die langsame Bewegung des Sterns, die durch die sogenannte Doppler-Verschiebung von dunklen Linien im Sternspektrum die Existenz des Planeten verrät.

Diese periodische Änderung der Spektralfarbe des Sterns wird durch die abwechselnde Bewegung des Sterns auf den Beobachter zu und wieder von ihm weg verursacht. „Durch seine ausgeklügelte Technologie und extrem hohe Stabilität kann CARMENES diese kleinen Bewegungen messen“, sagt Dr. Walter Seifert, Astronom an der Landessternwarte Königstuhl und verantwortlich für die Konstruktion des visuellen Spektrographen.

Durch die Kombination der Daten beider Spektrographen erhalten die Wissenschaftler erheblich mehr Informationen als mit ähnlichen Vorgängerinstrumenten. Prof. Quirrenbach rechnet damit, dass CARMENES in den kommenden Jahren dutzende Planeten außerhalb unseres Sonnensystems in der sogenannten habitablen Zone entdecken wird.

In den vergangenen Wochen wurde die Funktion des Messinstruments im eingebauten Zustand optimiert. Die Forscher erwarten, dass CARMENES bereits im Januar 2016 mit den wissenschaftlichen Beobachtungen beginnen kann. Innerhalb von voraussichtlich fünf Jahre sollen alle notwendigen Daten gesammelt und ausgewertet sein.

Am CARMENES-Projekt sind auf deutscher Seite die Landessternwarte Königstuhl im Zentrum für Astronomie der Universität Heidelberg, das Max-Planck-Institut für Astronomie in Heidelberg, die Thüringer Landessternwarte Tautenburg, das Institut für Astrophysik der Universität Göttingen und die Sternwarte der Universität Hamburg beteiligt.

Auf spanischer Seite sind dies das Instituto de Astrofísica de Andalucía in Granada, das Institut de Ciències de l'Espai in Barcelona, das Departamento de Astrofísica der Universidad Complutense de Madrid, das Instituto de Astrofísica de Canarias auf Teneriffa und das Centro de Astrobiología in Madrid. Eingebunden ist außerdem das deutsch-spanische Centro Astronómico Hispano-Alemán in Calar Alto.

CARMENES wird finanziert von der Max-Planck-Gesellschaft, dem Consejo Superior de Investigaciones Científicas und den Mitgliedern des CARMENES-Konsortiums. Weitere Unterstützung kommt vom spanischen Forschungsministerium, dem Land Baden-Württemberg, der Deutschen Forschungsgemeinschaft, der Klaus Tschira Stiftung, der Regierung von Andalusien und von der Europäischen Union durch den Europäischen Fonds für Regionale Entwicklung.

Kontakt:
Prof. Dr. Andreas Quirrenbach
Landessternwarte, Zentrum für Astronomie der Universität Heidelberg (ZAH)
Telefon (06221) 54-1792
A.Quirrenbach@lsw.uni-heidelberg.de

Dr. Holger Mandel
Landessternwarte, Zentrum für Astronomie der Universität Heidelberg (ZAH)
Telefon (06221) 54-1734
H.Mandel@lsw.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

https://carmenes.caha.es
http://www.lsw.uni-heidelberg.de
http://www.zah.uni-heidelberg.de

Media Contact

Marietta Fuhrmann-Koch idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer