Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker der Saar-Uni halten ein einzelnes Atom im Takt

02.05.2013
Ob beim Löffeln einer Suppe oder beim Landen eines Flugzeugs – Handlungen wie diese erfordern immer eine kontrollierte Bewegung.

Dies ist nur mit einem Regelkreis möglich, gleich ob in unserem Gehirn oder im Bordcomputer: Die aktuelle Position des Objektes wird gemessen und Abweichungen von der Wunschposition werden dauernd korrigiert.

Auch die Bewegung eines einzelnen Atoms lässt sich so kontrollieren und seine Position genau beobachten. Das konnten Physiker der Saar-Uni gemeinsam mit Kollegen aus Innsbruck, Karlsruhe und Mainz erstmals zeigen. Die Ergebnisse könnten in der Quanteninformationstechnologie zur Anwendung kommen und die Informationsübertragung zwischen Atomen vereinfachen.

Wenn Forscher einzelne Atome näher untersuchen wollen, müssen sie in die Trickkiste greifen und die Atome in einer Falle festhalten. „Bei der sogenannten Paul-Falle, die nach dem Nobelpreisträger Wolfgang Paul benannt ist, sperrt man die Atome in einem elektromagnetischen Feld ein“, erläutert Jürgen Eschner, Professor für Experimentalphysik an der Universität des Saarlandes. „Kühlt man das Atom zusätzlich, bewegt es sich nur noch in einem Bereich, der einige zehn Nanometer groß ist.“ Auch die Physiker um Eschner haben diesen Ansatz für ihre Versuche verwendet. „Das Atom schwingt hierbei noch mit einer Frequenz von rund einem Megahertz hin und her“, erklärt Eschner. „Dabei gerät es bei etwa 1000 Schwingungen einmal aus dem Takt.“

Damit das Atom nicht mehr „so schnell“ aus dem Rhythmus kommt, haben Eschners Kollegen in Innsbruck einen Regelkreis entwickelt, der die Bewegung eines Atoms derart kontrolliert, dass das Teilchen langsamer wird, wenn es zu schnell schwingt und umgekehrt. Die Physiker haben dazu eine Radio-Sendefrequenz verwendet und die Bewegung des Atoms mit der Frequenz in Einklang gebracht. „Auch wenn wir die Frequenz verändert haben, ist das Atom im Takt geblieben, so als ob es zu einer bestimmten Musik tanzt“, schiebt Eschner ein.

Wie gut der Regelkreis die Bewegung des Atoms kontrolliert, zeigt die Tatsache, dass das Teilchen bei zehn Millionen Schwingungen nur noch einmal aus dem Takt gerät.

Das System, das die Physiker in ihrer Studie präsentieren, eignet sich auch dazu, zwei beliebig weit voneinander entfernte Atome im Gleichtakt schwingen zu lassen. Dies würde die Kommunikation zwischen zwei Atomen vereinfachen und könnte künftig in der Quanteninformationstechnologie zum Einsatz kommen.

Damit die Physiker das Atom überhaupt im Takt halten konnten, mussten sie zunächst einmal die Position des Atoms in der Falle genau bestimmen. In dieser Studie ist es ihnen nun erstmals gelungen, die aktuelle Position eines Atoms kontinuierlich zu verfolgen: So können sie bis auf 20 Nanometer genau sagen, wo es sich in der Falle gerade befindet. Hierbei ermitteln die Physiker Geschwindigkeit und Aufenthaltspunkt des Teilchens mit einem Laser – die Methode ähnelt im Prinzip einem Geschwindigkeitsmesser der Polizei.

Die Wissenschaftler der Saar-Universität versuchen bekannte Kommunikationstechnologien in der Quantenwelt anzuwenden. In vorangegangenen Studien haben die Physiker um Eschner in Innsbruck bereits gezeigt, dass ein Regelkreis auch hilft, ein einzelnes Atom besser zu kühlen. „Wenn wir beide Methoden, Kühlung und Synchronisation, nun gleichzeitig anwenden, können wir die Atombewegung optimal kontrollieren“, kommentiert Eschner.

Die Studie „Shot-Noise-Limited Monitoring and Phase Locking of the Motion of a Single Trapped Ion“ wurde in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht: DOI 10.1103/PhysRevLett.110.133602

Fragen beantwortet:
Prof. Dr. Jürgen Eschner
Experimentalphysik
Tel.: 0681 / 302-58016
E-Mail: juergen.eschner(at)physik.uni-saarland.de

Melanie Löw | idw
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik