Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker entwickeln weltweit erstmals künstliche zellartige Kugeln aus natürlichen Proteinen

17.10.2016

Physiker der Universität des Saarlandes haben mit Kollegen aus Finnland eine Art künstliche Zelle, ein so genanntes Vesikel, entwickelt. Ihre Doppelmembran wird aus einem natürlich vorkommenden Protein gebildet. Das ist weltweit bisher einzigartig. Die Eigenschaften des Vesikels erlauben es außerdem, dass es sowohl in öl- als auch in wasserlöslicher Umgebung stabil existieren kann. Diese Eigenschaften – das natürliche Protein sowie die Verwendung in vielseitigen Umgebungen – machen sie zum idealen Ausgangspunkt, um weitere Anwendungen zu erforschen, zum Beispiel für den Wirkstofftransport im Körper. Die Studie ist nun im renommierten Forschungsmagazin „Advanced Materials“ erschienen.

Die Forscher der Universität des Saarlandes um Karin Jacobs, Professorin für die Physik kondensierter Materie, hatten eigentlich etwas ganz anderes im Sinn. Ursprünglich wollten sie die Eigenschaften bestimmter natürlich vorkommender Proteine, so genannter Hydrophobine, erforschen und beschreiben.


Hydrophobine sind eine Familie natürlich vorkommender Proteine mit einem wasserliebenden (blau) und einem wasserabstoßenden Teil (rot).

Grafik: AG Jacobs

„Uns ist aufgefallen, dass die Hydrophobine Kolonien bilden, wenn man sie in Wasser gibt. Sie ordnen sich sofort dicht an dicht an den Grenzflächen zwischen Wasser und Glas oder zwischen Wasser und Luft an“, beobachtete Karin Jacobs. „Zwischen den einzelnen Hydrophobinen muss also eine Anziehungskraft herrschen, sonst würden sie sich nicht zu Kolonien zusammenfinden.“ Aber wie stark diese Kraft ist, wussten sie und ihr Mitarbeiterteam um Dr. Hendrik Hähl nicht.

An dieser Stelle kam der benachbarte Lehrstuhl von Professor Ralf Seemann ins Spiel. Sein Mitarbeiterteam um Dr. Jean-Baptiste Fleury beschäftigt sich im Schwerpunkt mit den Vorgängen, die sich an den Grenzflächen zweier Flüssigkeiten abspielen. Die Forscher haben nun, genau wie an einer Straßenkreuzung mit vier Einmündungen, in einer winzigen Versuchsanordnung einen Ölstrom quer über die Kreuzung geschickt. Von den anderen beiden Einmündungen aus ließen sie nun „Wasserfinger“, in denen sich die Hydrophobine ganz vorne anordneten – sie streben ja immer an die Grenzfläche des Mediums, in dem sie schwimmen – in diese Kreuzung hineinragen.

Die Physiker „drückten“ diese Finger stetig weiter aufeinander zu, um zu sehen, ab welchem Zeitpunkt die Anziehungskraft wirkt. „Irgendwann schnappen die beiden Wasserfinger dann zusammen und bildeten eine einzige stabile Grenzfläche aus zwei Lagen“, sagt Ralf Seemann. „Das Verrückte dabei ist: Es funktioniert auch anders herum, also mit Ölfingern, die einen Wasserstrom unterbrechen“, erklärt der Physiker.

Dies sei neuartig, denn bei anderen Molekülen funktioniert dies nur in einem der beiden Szenarien. Ursache für dieses Verhalten ist, dass sich die Proteine normalerweise entweder mit ihrer wasserliebenden, der hydrophilen Seite, an ein wässriges Medium anheften, oder mit ihrer hydrophoben Seite an einem öligen Medium. Dass eine Sorte von Molekülen in beiden Umgebungen gleichzeitig stabile Doppellagen bildet, ist neu.

Von dieser Erkenntnis angetrieben, wollten die Forscher in einem dritten Experimentierschritt dann herausfinden, ob sich diese stabile Doppellage zu einer Art Transporttasche, einem Vesikel, formen lässt. Ähnlich wie eine Seifenblase haben sie dazu die stabile Doppelmembran aufgeblasen, allerdings mit Flüssigkeit, nicht mit Luft. Es funktionierte: Die zellartige Kugel mit der Doppelmembran aus natürlichen Proteinen blieb stabil. „Das hat bisher noch niemand gemacht“, freut sich Jean-Baptiste Fleury, der diese Experimente durchgeführt hat, über diesen Erfolg.

Künstlich herstellbar waren bisher nur einlagige Membranen oder Vesikel aus speziell synthetisierten Makromolekülen. Vesikel mit einer Doppelmembran aus natürlichem Protein, die dazu noch maßgeschneidert entweder für eine wässrige oder eine ölige Umgebung geeignet sind, gibt es bisher nicht.

In einem weiteren Schritt haben die Wissenschaftler nachgewiesen, dass sich in diese Vesikel auch Ionenkanäle einlagern lassen, die geladene Teilchen, Ionen, durch die Doppellage aus Hydrophobinen transportieren können, genau wie bei einer natürlichen Zellwand, die aus einer Doppellage aus Lipidmolekülen besteht.

Dadurch haben die Physiker die Grundlage für weitere Forschungsarbeiten gelegt, zum Beispiel für einen zielgenaueren Wirkstofftransport. Man könnte in solchen Vesikeln zum Beispiel wasserlösliche Moleküle durch eine wässrige Umgebung hindurch transportieren und öllösliche durch eine ölige Umgebung. „Wir werfen dem Wirkstoff sozusagen ein Vesikel-Mäntelchen über“, vergleicht Dr. Hendrik Hähl die Methode. „Dadurch, dass sie eine natürliche Verpackung bilden, haben solche Vesikel das Potential für die Anwendung im menschlichen Körper.“

Dieses Forschungsergebnis war so nicht geplant, denn eigentlich war das Ziel, nur die Energie zu bestimmen, die die Hydrophobine zur Agglomeration, also zur Kolonienbildung, bewegt. Nachdem sich dann eine Doppellage in beiden Orientierungen bilden ließ, war der Weg frei, auszuprobieren, ob sich auch Vesikel generieren lassen. Dass so eines zum anderen führte, quasi vom wissenschaftlichen Hölzchen aufs Stöckchen, ist geradezu ein Lehrstück der erkenntnisorientierten Forschung: „Die ‚Entdeckung‘ dieser Vesikel ist prototypisch für das Wesen der Grundlagenforschung. Anders ausgedrückt: Hätte uns am Anfang jemand gesagt: ‚Macht diese Dinger aus einer natürlichen Doppelmembran‘, hätten wir das vermutlich nicht hinbekommen“, resümiert Karin Jacobs.

Der Artikel „Pure Protein Bilayers and Vesicles from Native Fungal
Hydrophobins“ ist am 14. Oktober 2016 in der Online-Version der Fachzeitschrift „Advanced Materials“ erschienen: http://onlinelibrary.wiley.com/doi/10.1002/adma.201602888/full.

Weitere Informationen:
Prof. Dr. Karin Jacobs
Tel.: (0681) 30271788
E-Mail: k.jacobs@physik.uni-saarland.de

Dr. Hendrik Hähl
Tel.: (0681) 30271703
E-Mail: h.haehl@physik.uni-saarland.de

Prof. Dr. Ralf Seemann
Tel.: (0681) 30271799
E-Mail: r.seemann@physik.uni-saarland.de

Dr. Jean-Baptiste Fleury
Tel.: (0681) 30271712
E-Mail: jean-baptiste.fleury@physik.uni-saarland.de

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/adma.201602888/full

Thorsten Mohr | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten