Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker entwickeln Methode, mit der Quantencomputer 72 Mal schneller starten können als bisher

23.06.2014

Physiker der Saar-Uni haben eine Methode entwickelt, mit der ein Quantencomputer in fünf Minuten eingestellt und stabil ist.

Bisher dauerte das im Experiment sechs Stunden. Das bedeutet eine ganz neue Qualität für Experimente: Blieb bislang nur eine kurze Zeit, um mit einem Quantenprozessor zu experimentieren, bevor die empfindlichen Einstellungen wieder nachjustiert werden mussten, können Forscher künftig schneller und länger experimentieren.


Das Bild zeigt einen integrierten Schaltkreis für einen Quantencomputer mit 5 Quantenbits (Kreuze). An solchen Chips wurde die neue Kalibrierungsmethode experimentell demonstriert.

Foto: Erik Lucero/UCSB

Die Arbeit wurde in der Fachzeitschrift Physical Review Letters veröffentlicht. In derselben Ausgabe haben Physiker der University of California einen Aufsatz veröffentlicht, der die Methode der Saarbrücker Physiker im Experiment bestätigt.

Startknopf drücken, Monitor anschalten, Kaffee holen, los geht’s: Übliche Computer sind in Windeseile hochgefahren und betriebsbereit. Bei einem Quantencomputer sieht das ganz anders aus. Um einen Chip mit fünf Quantenbits, dem quantenphysikalischen Äquivalent der Bits in normalen Rechnern, so einzustellen, dass man damit arbeiten und experimentieren kann, musste bisher ein Wissenschaftler stundenlang Dutzende Einstellungen aufs Feinste kalibrieren. Lag er nur wenig daneben, lief der Chip nicht.

Denn das Problem ist, dass Quantencomputer ähnlich wie ein Musikinstrument auf kleinste Unterschiede in der Umgebung reagieren. Ist es beispielsweise nur ein wenig wärmer oder kälter, ist der Luftdruck höher oder niedriger als am Vortag, funktioniert das komplexe Geflecht der Quantenbits nicht mehr, der Quantencomputer ist sozusagen „verstimmt“ und muss neu eingestellt werden.

„Bisher haben sich Quantenphysiker also jeden Tag aufs Neue hingesetzt und geschaut, was anders ist als am Vortag. Sie haben jeden Parameter gemessen und den Chip immer wieder mühsam neu kalibriert“, erklärt Frank Wilhelm-Mauch, Professor für Quanten- und Festkörpertheorie an der Universität des Saarlandes. Die Fehlerquote beim Messen der Umgebungsbedingungen darf nur sehr gering sein, etwa im Bereich unter 0,1 Prozent.

„Das bedeutet, dass nur bei einer von 1000 Messungen ein Fehler passieren darf. Sind nur zwei von 1000 Messungen fehlerhaft, kann die Software das nicht mehr korrigieren und der Quantencomputer läuft fehlerhaft“, erklärt Frank Wilhelm-Mauch die Empfindlichkeit. Bedenkt man, dass rund 50 verschiedene Parameter in die Kalibrierung mit einfließen, erhält man eine Vorstellung von dem Aufwand, mit dem sie betrieben werden muss.

Gemeinsam mit seinem Doktoranden Daniel Egger hat er überlegt, was man grundsätzlich anders machen kann. „Wir haben uns gefragt, warum man jeden Tag aufs Neue verstehen muss, was anders ist als am Vortag? Also haben wir uns irgendwann gesagt: Das müssen wir gar nicht. Entscheidend ist, dass die Einstellung am Ende funktioniert. Warum sie funktioniert, ist nicht so wichtig.“ Mit diesem pragmatischen Ansatz gingen Wilhelm-Mauch und Egger an die Arbeit. „Wir haben für die Kalibrierung einen Algorithmus aus der Ingenieurmathematik, genauer gesagt, aus dem Bauingenieurwesen, verwendet. Denn auch dort sind Versuche teuer“, sagt Physiker Wilhelm-Mauch.

Mithilfe dieses Kniffs gelang es den Theoretikern, die Fehlerquote beim Kalibrieren auf unter die benötigten 0,1 Prozent zu drücken und gleichzeitig die Geschwindigkeit des Einstellverfahrens von sechs Stunden auf fünf Minuten zu reduzieren. Das haben Experimentalphysiker der University of California in Santa Barbara gezeigt, die die Saarbrücker Methode, welche von den Physikern auf den Namen „Ad-HOC” (Adaptive Hybride Optimale Kontrolle) getauft wurde, erstmals auf Herz und Nieren testeten. Das Experiment ist in derselben Ausgabe der Physical Review Letters veröffentlicht wie der Saarbrücker Aufsatz.

Für weitere Experimente bei der Erforschung von Quantencomputern ist dieser Fortschritt ungemein wichtig. Nun müssen in den Laboren der Physiker nicht mehr jeden Tag stundenlange Vorarbeiten gemacht werden, um eine kurze Zeit lang zu experimentieren. „Denn während der langen Kalibrierungsphase haben sich viele Parameter wie Temperatur, Licht und Luftdruck ja bereits wieder leicht verändert, so dass die Zeitspanne, in der der Chip fehlerfrei läuft und man damit experimentieren kann, immer kürzer wird“, sagt Wilhelm-Mauch, der hinzufügt, dass seine Überlegungen skalierbar seien. Sind bisher also aus rein technischen Gründen Experimente mit einem Chip möglich, auf dem fünf Quantenbits die Rechenoperationen durchführen, sind in Zukunft der Größe des Chips mit dieser Methode kaum Grenzen gesetzt, er ist beliebig vergrößerbar.

Zudem gibt es einen Clou an der Methode, auf den Frank Wilhelm-Mauch mit einer Portion Humor hinweist: „Unsere Methode ist im Gegensatz zu der bisherigen Kalibrierung von Hand vollautomatisch. Der Wissenschaftler drückt also tatsächlich nur einen Knopf wie bei einem herkömmlichen Computer und geht Kaffee holen, bis der Quantencomputer einsatzbereit ist.“ Im Alltag ein nicht zu vernachlässigender Gewinn.

Hintergrund Quantentechnologie:

Zugrundeliegendes Prinzip der Quantentechnologie ist, dass ein Teilchen (z.B. ein Atom, Elektron, Lichtteilchen) zwei Zustände gleichzeitig einnehmen kann. Diese Zustände nennt man auch Überlagerungszustände. Auf die Computertechnologie übertragen bedeutet das, dass die Bits, aus denen eine Information auf einem normalen Computer besteht, die Zustände 1 oder 0 haben können, auf einem Quantencomputer hingegen die Zustände 1 und 0 gleichzeitig, in jeder beliebigen Kombination. Solche Quantenbits oder Qubits sind die Grundlage eines Quantencomputers. Rechnen kann man beispielsweise mithilfe von Atomen als Speichereinheit, indem man sie mit Laserlicht anregt und ihren Quantenzustand gezielt manipuliert. Eine Rechenoperation kann nun auf beiden Anteilen des Überlagerungszustandes (1 und 0) gleichzeitig oder parallel stattfinden. Ein Quantencomputer kann in derselben Zeit, in der ein herkömmlicher 32-Bit-Rechner einen seiner 2 hoch 32 möglichen Zustände verarbeitet, parallel alle diese Zustände verarbeiten. Der Quantencomputer rechnet also um ein Vielfaches schneller als ein normaler Computer. Diese hohe Rechenleistung lässt sich allerdings nur für spezielle Probleme ausnutzen, für die Rechenvorschriften (Algorithmen) entwickelt wurden.
Bei vielen der Überlagerungszustände befinden sich die Quantenbits in einem „verschränkten Zustand“, d.h. sie lassen sich als Ganzes, nicht aber mehr als unabhängige Teilchen beschreiben. Sowohl verschränkte Zustände als auch Überlagerungszustände sind allerdings sehr empfindlich auf jede Wechselwirkung mit ihrer Umgebung und verlieren schnell ihren Quantencharakter. Für einen Quantencomputer bedeutet dies, dass man großen Aufwand für die Abschirmung von Umwelteinflüssen treiben muss – ein anderes Gebiet der Quantentechnologien nutzt aber genau diese Tatsache aus: in der Quantenkommunikation können geheime Nachrichten in verschränkten oder Überlagerungszuständen kodiert werden. Versucht ein Spion Kenntnis der Nachricht zu erhalten, zerstört er den Quantenzustand und der Abhörversuch fliegt auf.

Weitere Informationen über die Funktionsweise des Quantencomputers gibt es in dieser Pressemitteilung: http://idw-online.de/de/news570132

Die Studie Adaptive Hybrid Optimal Quantum Control for Imprecisely Characterized Systems ist am 20. Juni im Fachmagazin Physical Review Letters (https://journals.aps.org/prl) erschienen (DOI: 10.1103/PhysRevLett.112.240503).

Fragen beantwortet:
Prof. Dr. Frank Wilhelm-Mauch
Tel.: (0681) 3023960
E-Mail: fwm@physik.uni-saarland.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-2601, oder -64091).

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.240503
http://idw-online.de/de/news570132

Thorsten Mohr | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie