Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker beobachten die Aufspaltung eines Elektrons in einem Festkörper

19.04.2012
Physiker konnten beobachten, wie sich ein Elektron in zwei voneinander getrennte Teile aufspaltet, die jeweils eine bestimmte Eigenschaft des Elektrons tragen

Das sogenannte «Spinon» trägt dann den Spin des Elektrons, also seine Eigenrotation. Das «Orbiton» ist der Träger des orbitalen Moments – der Bewegung um den Atomkern.

Diese neu hergestellten Teilchen können das Material, in dem sie erzeugt wurden, aber nicht verlassen. Diese in der Fachzeitschrift Nature veröffentlichten Ergebnisse stammen von einer internationalen Forschungsgruppe unter der Führung von Experimentalphysikern des schweizerischen Paul Scherrer Instituts und von theoretischen Physikern am IFW Dresden.

Alle Elektronen besitzen eine als «Spin» bezeichnete Eigenschaft: Man kann sich die Elektronenspins als winzige atomare Magnete vorstellen, die den Magnetismus der Stoffe und Materialien erzeugen. Gleichzeitig bewegen sich die Elektronen auf bestimmten Bahnen, den sogenannten «Orbitalen», um den Atomkern. In der Regel gehören diese beiden quantenphysikalischen Eigenschaften (Spin und Orbitalmoment von der Bahnbewegung) zu einem bestimmten Elektron. Jetzt gelang es in einem am Paul Scherrer Institut durchgeführten Experiment, diese Eigenschaften des Elektrons zu trennen.
Röntgenstrahlung spaltet das Elektron in Spinon und Orbiton

Die Wissenschaftler konnten die Aufspaltung des Elektrons in zwei neue Teilchen bei Messungen am Strontium-Kupferoxid Sr2CuO3 feststellen. In diesem Material ist die Bewegung der Teilchen auf eine Dimension beschränkt; sie können sich nur entlang einer Achse fortbewegen, entweder vor- oder rückwärts. Mithilfe von Röntgenstrahlung konnten die Wissenschaftler einige Elektronen der Kupferatome im Strontium-Kupferoxid Sr2CuO3 auf Orbitale höherer Energie heben, was einer schnelleren Bewegung um den Atomkern entspricht. Nach dieser Anregung durch Röntgenstrahlung spalteten sich die Elektronen in zwei Teile auf. Eines dieser neu erzeugten Teilchen, das «Spinon», trägt den Elektronenspin, also die magnetischen Eigenschaften. Das andere Teilchen, das «Orbiton», trägt das orbitale Moment, also die Eigenschaft der nun erhöhten Bahnenergie. In dieser Studie konnte man diese beiden fundamentalen Momente des Elektrons erstmals in voneinander getrenntem Zustand beobachten.

Im Experiment richtete man Röntgenlicht der Synchrotron Lichtquelle Schweiz SLS auf das spezielle Kupferoxid und beobachtete, wie sich Energie und Impuls der Röntgenstrahlung bei der Kollision mit der Substanz verändert. Aus der Veränderung lassen sich die Eigenschaften der neu erzeugten Teilchen bestimmen. «Für diese Experimente benötigen wir nicht nur Röntgenlicht mit sehr hoher Intensität und äußerst genau bestimmter Energie, um die gewünschte Wirkung auf die Kupferatome zu erzielen», erklärt Thorsten Schmitt, der Leiter der Experimentatorengruppe, «sondern auch extrem präzise Röntgendetektoren.» In dieser Hinsicht ist die SLS am Paul Scherrer Institut zurzeit weltweit führend.

Elektronenspaltung vermutlich in vielen Materialien nachweisbar

«Schon seit einiger Zeit weiß man, dass sich ein Elektron in bestimmten Materialien prinzipiell aufspalten kann», erklärt Jeroen van den Brink, der Leiter der Theoretikergruppe am IFW Dresden, «aber bisher fehlte die empirische Bestätigung dieser Trennung in voneinander unabhängige Spinonen und Orbitonen. Jetzt wissen wir genau, wo wir diese neuen Teilchen suchen müssen, und werden sie in zahlreichen weiteren Materialien finden.»

Ergebnisse könnten das Verständnis der Hochtemperatur-Supraleitung unterstützen

Die beobachtete Aufspaltung der Elektronen könnte ausserdem wichtige Schlüsse auf einem anderen Forschungsgebiet ermöglichen, nämlich der Hochtemperatur-Supraleitung. Elektronen verhalten sich in Sr2CuO3 und in Supraleitern auf Kupferbasis ähnlich. Somit eröffnet das Verständnis der Aufspaltung eines Elektrons in dem hier betrachteten Material möglicherweise neue Wege zu einem erweiterten theoretischen Verständnis der Hochtemperatur-Supraleitung.

ÜBER DAS PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungseinrichtungen und stellt diese der schweizerischen und der internationalen Forschungsgemeinschaft zur Verfügung. Zu den Forschungsschwerpunkten des Instituts zählen die Themen Materie und Material, Mensch und Gesundheit sowie Energie und Umwelt. Das PSI ist mit 1400 Mitarbeitern und einem Jahresbudget von etwa 300 Millionen Schweizer Franken das grösste Forschungszentrum der Schweiz.

ÜBER DAS IFW DRESDEN
Das Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden – kurz das IFW Dresden – ist ein nicht universitäres Forschungsinstitut und Mitglied der Leibniz-Gemeinschaft. Dieses Institut beschäftigt sich mit moderner Materialwissenschaft und kombiniert Forschungstätigkeiten in Physik, Chemie und Materialwissenschaften mit der technologischen Entwicklung neuer Materialien und Produkte. Das IFW Dresden beschäftigt rund 400 Mitarbeiter, darunter 190 Wissenschaftler, grösstenteils Physiker, Chemiker und Materialingenieure. Die deutsche Bundesregierung und die sächsische Landesregierung tragen zu gleichen Teilen das Budget von 23 Millionen Euro. Neben der institutionellen Finanzierung erhält das IFW Dresden Projektmittel in Höhe von jährlich fünf Millionen Euro.

Dr. Carola Langer | idw
Weitere Informationen:
http://www.ifw-dresden.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie