Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker beobachten die Aufspaltung eines Elektrons in einem Festkörper

19.04.2012
Physiker konnten beobachten, wie sich ein Elektron in zwei voneinander getrennte Teile aufspaltet, die jeweils eine bestimmte Eigenschaft des Elektrons tragen

Das sogenannte «Spinon» trägt dann den Spin des Elektrons, also seine Eigenrotation. Das «Orbiton» ist der Träger des orbitalen Moments – der Bewegung um den Atomkern.

Diese neu hergestellten Teilchen können das Material, in dem sie erzeugt wurden, aber nicht verlassen. Diese in der Fachzeitschrift Nature veröffentlichten Ergebnisse stammen von einer internationalen Forschungsgruppe unter der Führung von Experimentalphysikern des schweizerischen Paul Scherrer Instituts und von theoretischen Physikern am IFW Dresden.

Alle Elektronen besitzen eine als «Spin» bezeichnete Eigenschaft: Man kann sich die Elektronenspins als winzige atomare Magnete vorstellen, die den Magnetismus der Stoffe und Materialien erzeugen. Gleichzeitig bewegen sich die Elektronen auf bestimmten Bahnen, den sogenannten «Orbitalen», um den Atomkern. In der Regel gehören diese beiden quantenphysikalischen Eigenschaften (Spin und Orbitalmoment von der Bahnbewegung) zu einem bestimmten Elektron. Jetzt gelang es in einem am Paul Scherrer Institut durchgeführten Experiment, diese Eigenschaften des Elektrons zu trennen.
Röntgenstrahlung spaltet das Elektron in Spinon und Orbiton

Die Wissenschaftler konnten die Aufspaltung des Elektrons in zwei neue Teilchen bei Messungen am Strontium-Kupferoxid Sr2CuO3 feststellen. In diesem Material ist die Bewegung der Teilchen auf eine Dimension beschränkt; sie können sich nur entlang einer Achse fortbewegen, entweder vor- oder rückwärts. Mithilfe von Röntgenstrahlung konnten die Wissenschaftler einige Elektronen der Kupferatome im Strontium-Kupferoxid Sr2CuO3 auf Orbitale höherer Energie heben, was einer schnelleren Bewegung um den Atomkern entspricht. Nach dieser Anregung durch Röntgenstrahlung spalteten sich die Elektronen in zwei Teile auf. Eines dieser neu erzeugten Teilchen, das «Spinon», trägt den Elektronenspin, also die magnetischen Eigenschaften. Das andere Teilchen, das «Orbiton», trägt das orbitale Moment, also die Eigenschaft der nun erhöhten Bahnenergie. In dieser Studie konnte man diese beiden fundamentalen Momente des Elektrons erstmals in voneinander getrenntem Zustand beobachten.

Im Experiment richtete man Röntgenlicht der Synchrotron Lichtquelle Schweiz SLS auf das spezielle Kupferoxid und beobachtete, wie sich Energie und Impuls der Röntgenstrahlung bei der Kollision mit der Substanz verändert. Aus der Veränderung lassen sich die Eigenschaften der neu erzeugten Teilchen bestimmen. «Für diese Experimente benötigen wir nicht nur Röntgenlicht mit sehr hoher Intensität und äußerst genau bestimmter Energie, um die gewünschte Wirkung auf die Kupferatome zu erzielen», erklärt Thorsten Schmitt, der Leiter der Experimentatorengruppe, «sondern auch extrem präzise Röntgendetektoren.» In dieser Hinsicht ist die SLS am Paul Scherrer Institut zurzeit weltweit führend.

Elektronenspaltung vermutlich in vielen Materialien nachweisbar

«Schon seit einiger Zeit weiß man, dass sich ein Elektron in bestimmten Materialien prinzipiell aufspalten kann», erklärt Jeroen van den Brink, der Leiter der Theoretikergruppe am IFW Dresden, «aber bisher fehlte die empirische Bestätigung dieser Trennung in voneinander unabhängige Spinonen und Orbitonen. Jetzt wissen wir genau, wo wir diese neuen Teilchen suchen müssen, und werden sie in zahlreichen weiteren Materialien finden.»

Ergebnisse könnten das Verständnis der Hochtemperatur-Supraleitung unterstützen

Die beobachtete Aufspaltung der Elektronen könnte ausserdem wichtige Schlüsse auf einem anderen Forschungsgebiet ermöglichen, nämlich der Hochtemperatur-Supraleitung. Elektronen verhalten sich in Sr2CuO3 und in Supraleitern auf Kupferbasis ähnlich. Somit eröffnet das Verständnis der Aufspaltung eines Elektrons in dem hier betrachteten Material möglicherweise neue Wege zu einem erweiterten theoretischen Verständnis der Hochtemperatur-Supraleitung.

ÜBER DAS PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungseinrichtungen und stellt diese der schweizerischen und der internationalen Forschungsgemeinschaft zur Verfügung. Zu den Forschungsschwerpunkten des Instituts zählen die Themen Materie und Material, Mensch und Gesundheit sowie Energie und Umwelt. Das PSI ist mit 1400 Mitarbeitern und einem Jahresbudget von etwa 300 Millionen Schweizer Franken das grösste Forschungszentrum der Schweiz.

ÜBER DAS IFW DRESDEN
Das Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden – kurz das IFW Dresden – ist ein nicht universitäres Forschungsinstitut und Mitglied der Leibniz-Gemeinschaft. Dieses Institut beschäftigt sich mit moderner Materialwissenschaft und kombiniert Forschungstätigkeiten in Physik, Chemie und Materialwissenschaften mit der technologischen Entwicklung neuer Materialien und Produkte. Das IFW Dresden beschäftigt rund 400 Mitarbeiter, darunter 190 Wissenschaftler, grösstenteils Physiker, Chemiker und Materialingenieure. Die deutsche Bundesregierung und die sächsische Landesregierung tragen zu gleichen Teilen das Budget von 23 Millionen Euro. Neben der institutionellen Finanzierung erhält das IFW Dresden Projektmittel in Höhe von jährlich fünf Millionen Euro.

Dr. Carola Langer | idw
Weitere Informationen:
http://www.ifw-dresden.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten