Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker beobachten die Aufspaltung eines Elektrons in einem Festkörper

19.04.2012
Physiker konnten beobachten, wie sich ein Elektron in zwei voneinander getrennte Teile aufspaltet, die jeweils eine bestimmte Eigenschaft des Elektrons tragen

Das sogenannte «Spinon» trägt dann den Spin des Elektrons, also seine Eigenrotation. Das «Orbiton» ist der Träger des orbitalen Moments – der Bewegung um den Atomkern.

Diese neu hergestellten Teilchen können das Material, in dem sie erzeugt wurden, aber nicht verlassen. Diese in der Fachzeitschrift Nature veröffentlichten Ergebnisse stammen von einer internationalen Forschungsgruppe unter der Führung von Experimentalphysikern des schweizerischen Paul Scherrer Instituts und von theoretischen Physikern am IFW Dresden.

Alle Elektronen besitzen eine als «Spin» bezeichnete Eigenschaft: Man kann sich die Elektronenspins als winzige atomare Magnete vorstellen, die den Magnetismus der Stoffe und Materialien erzeugen. Gleichzeitig bewegen sich die Elektronen auf bestimmten Bahnen, den sogenannten «Orbitalen», um den Atomkern. In der Regel gehören diese beiden quantenphysikalischen Eigenschaften (Spin und Orbitalmoment von der Bahnbewegung) zu einem bestimmten Elektron. Jetzt gelang es in einem am Paul Scherrer Institut durchgeführten Experiment, diese Eigenschaften des Elektrons zu trennen.
Röntgenstrahlung spaltet das Elektron in Spinon und Orbiton

Die Wissenschaftler konnten die Aufspaltung des Elektrons in zwei neue Teilchen bei Messungen am Strontium-Kupferoxid Sr2CuO3 feststellen. In diesem Material ist die Bewegung der Teilchen auf eine Dimension beschränkt; sie können sich nur entlang einer Achse fortbewegen, entweder vor- oder rückwärts. Mithilfe von Röntgenstrahlung konnten die Wissenschaftler einige Elektronen der Kupferatome im Strontium-Kupferoxid Sr2CuO3 auf Orbitale höherer Energie heben, was einer schnelleren Bewegung um den Atomkern entspricht. Nach dieser Anregung durch Röntgenstrahlung spalteten sich die Elektronen in zwei Teile auf. Eines dieser neu erzeugten Teilchen, das «Spinon», trägt den Elektronenspin, also die magnetischen Eigenschaften. Das andere Teilchen, das «Orbiton», trägt das orbitale Moment, also die Eigenschaft der nun erhöhten Bahnenergie. In dieser Studie konnte man diese beiden fundamentalen Momente des Elektrons erstmals in voneinander getrenntem Zustand beobachten.

Im Experiment richtete man Röntgenlicht der Synchrotron Lichtquelle Schweiz SLS auf das spezielle Kupferoxid und beobachtete, wie sich Energie und Impuls der Röntgenstrahlung bei der Kollision mit der Substanz verändert. Aus der Veränderung lassen sich die Eigenschaften der neu erzeugten Teilchen bestimmen. «Für diese Experimente benötigen wir nicht nur Röntgenlicht mit sehr hoher Intensität und äußerst genau bestimmter Energie, um die gewünschte Wirkung auf die Kupferatome zu erzielen», erklärt Thorsten Schmitt, der Leiter der Experimentatorengruppe, «sondern auch extrem präzise Röntgendetektoren.» In dieser Hinsicht ist die SLS am Paul Scherrer Institut zurzeit weltweit führend.

Elektronenspaltung vermutlich in vielen Materialien nachweisbar

«Schon seit einiger Zeit weiß man, dass sich ein Elektron in bestimmten Materialien prinzipiell aufspalten kann», erklärt Jeroen van den Brink, der Leiter der Theoretikergruppe am IFW Dresden, «aber bisher fehlte die empirische Bestätigung dieser Trennung in voneinander unabhängige Spinonen und Orbitonen. Jetzt wissen wir genau, wo wir diese neuen Teilchen suchen müssen, und werden sie in zahlreichen weiteren Materialien finden.»

Ergebnisse könnten das Verständnis der Hochtemperatur-Supraleitung unterstützen

Die beobachtete Aufspaltung der Elektronen könnte ausserdem wichtige Schlüsse auf einem anderen Forschungsgebiet ermöglichen, nämlich der Hochtemperatur-Supraleitung. Elektronen verhalten sich in Sr2CuO3 und in Supraleitern auf Kupferbasis ähnlich. Somit eröffnet das Verständnis der Aufspaltung eines Elektrons in dem hier betrachteten Material möglicherweise neue Wege zu einem erweiterten theoretischen Verständnis der Hochtemperatur-Supraleitung.

ÜBER DAS PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungseinrichtungen und stellt diese der schweizerischen und der internationalen Forschungsgemeinschaft zur Verfügung. Zu den Forschungsschwerpunkten des Instituts zählen die Themen Materie und Material, Mensch und Gesundheit sowie Energie und Umwelt. Das PSI ist mit 1400 Mitarbeitern und einem Jahresbudget von etwa 300 Millionen Schweizer Franken das grösste Forschungszentrum der Schweiz.

ÜBER DAS IFW DRESDEN
Das Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden – kurz das IFW Dresden – ist ein nicht universitäres Forschungsinstitut und Mitglied der Leibniz-Gemeinschaft. Dieses Institut beschäftigt sich mit moderner Materialwissenschaft und kombiniert Forschungstätigkeiten in Physik, Chemie und Materialwissenschaften mit der technologischen Entwicklung neuer Materialien und Produkte. Das IFW Dresden beschäftigt rund 400 Mitarbeiter, darunter 190 Wissenschaftler, grösstenteils Physiker, Chemiker und Materialingenieure. Die deutsche Bundesregierung und die sächsische Landesregierung tragen zu gleichen Teilen das Budget von 23 Millionen Euro. Neben der institutionellen Finanzierung erhält das IFW Dresden Projektmittel in Höhe von jährlich fünf Millionen Euro.

Dr. Carola Langer | idw
Weitere Informationen:
http://www.ifw-dresden.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie