Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photonenpaare im Gleichschritt

08.03.2012
Experimenteller Nachweis in der Resonanzemission von „künstlichen“ Atomen

Das Aussenden von Lichtteilchen (Photonen) ist ein zentraler Ansatz für die künftige Datenübertragung in superschnellen Quantencomputern oder abhörsicheren Netzen. Hierzu wird ein Quantenpunkt, ähnlich einem Atom, per Laser so lange angeregt, bis er die Energie in Form genau eines Lichtquants wieder abgibt und in seinen Ausgangszustand zurückkehrt.

Entscheidend ist dabei, dass die Differenz zwischen angeregtem und nicht angeregtem Zustand konstant ist, was aber in der Praxis Schwierigkeiten bereitet. Detaillierte Studien dieser so genannten Resonanzfluoreszenz sind ein Forschungsfeld des Teams von Prof. Peter Michler am Institut für Halbleiteroptik und Funktionelle Grenzflächen der Uni Stuttgart, das hierzu das Halbleitersystem Indium-Gallium-Arsenid untersucht. Anfang 2012 ist es dem Team erstmals gelungen, die Resonanzfluoreszenz von einzelnen Halbleiter-Quantenpunkten im Regime eines „Dressed States“, also im Verbund mit dem umgebenden Lichtfeld, quantenstatistisch im Detail zu studieren und dabei die Vorhersagen theoretischer Modelle zu verifizieren. *)

In der Theorie beschreibt ein „Dressed State“ den gemeinsamen Eigenzustand eines Zwei-Niveau-Quantenemitters und des ihn umgebenden, wechselwirkenden Lichtfeldes (Laser) im Fall hoher Anregungsintensitäten. In diesem Fall können Atom und Lichtfeld nicht mehr einzeln betrachtet werden, sondern als neuer Atom-Licht-Zustand, bei dem der Quantenemitter nicht mehr zwei Niveaus aufweist, sondern vier. Der Charakter einer so modifizierten Photonenquelle spiegelt sich in Form eines charakteristisch aufgespaltenen Drei-Linien-Spektrums („Mollow Triplets“) der Emission wider, das mittels hochauflösender Spektroskopie direkt beobachtet werden kann.

Ata Ulhaq und Kollegen am IHFG konnten nun aus dem „Dressed State“ einzelner Zwei-Niveau-Quantenemitter so genannte Zwei-Photonen-Kaskaden nachweisen. Solche Kaskaden bestehen aus abwechselnd einem hochenergetischen, roten Photon und einem niederenergetischen blauen. Für den Nachweis wurde die Emissionsstatistik von Photonen aus den beiden Nebenbanden des Drei-Linien-Spektrums im Detail untersucht. Jede dieser Banden zeigt für sich genommen Einzelphotonenemission, was mit der Theorie im Einklang steht. Zwischen den beiden Nebenbanden ergibt sich jedoch eine definierte zeitliche Abfolge in der Aussendung einzelner Lichtquanten. Dieser Prozess kann kontrolliert werden, indem man den anregenden Laser gegenüber der Resonanz des Quantenpunkts gezielt in Richtung Rot- oder Blauspektrum „verstimmt“.

Für die künftige Nutzung sind auf der Basis der Resonanz-Fluoreszenz einzelner Quantenpunkte erzeugte Zwei-Photonen-Emitter deshalb interessant, weil ihre Lichtemission gegenüber bisherigen Konzepten deutlich verbesserte Kohärenzeigenschaften aufweist. Dies ermöglicht es, zwei Photonen zeitlich geordnet gemeinsam auszusenden. Während das erste Photon einen Rechenalgorithmus anstößt, kann das zweite Photon den nächsten Rechenvorgang bereits „ankündigen“. Für das künftige Quantencomputing ist dies ein interessanter Ansatz, um die erhofften Geschwindigkeiten zu erzielen.

*) Über den Nachweis berichtete die Zeitschrift Nature Photonics im Februar 2012: http://dx.doi.org/ unter DOI: 10.1038/NPHOTON.2012.23

KONTAKT
Dr. Sven Ulrich
Institut für Halbleiteroptik und Funktionale Grenzflächen
Tel. 0711/685-65226
e-mail: s.ulrich@ihfg.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie