Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Orionnebel in neuem Licht

14.11.2012
Astronomen vermessen zweiten Sternenhaufen im Orionnebel und finden wesentlich mehr Masse als bisher angenommen
In der aktuellen Ausgabe der Fachzeitschrift "Astronomy & Astrophysics" erschien ein Artikel über die Sternentstehungsgebiete im Orion, welcher von der Redaktion als "highlighted paper" ausgezeichnet wurde. Erstautor ist João Alves, Professor für Stellare Astrophysik und seit Oktober 2012 Leiter des Instituts für Astrophysik der Universität Wien. Die Arbeit könnte unsere Vorstellungen von Sternentstehung entscheidend verändern.

Der Orionnebel ist in klaren Winternächten sogar mit freiem Auge erkennbar. Schon vor rund 400 Jahren beschrieb ihn erstmals der französische Astronom Nicolas-Claude Fabri de Peiresc als "Nebel". Die Entdeckung des Orionnebels geht also auf die frühe teleskopische Erforschung des Himmels zurück – doch erst in den letzten 60 Jahren wurde die astrophysikalische Bedeutung dieses Himmelsobjekts erkannt.

Der Orionnebel ist eine sehr produktive Geburtsstätte von Sternen in unserer Milchstraße. Im Bereich dieses Gasnebels fand man eine Vielfalt an werdenden Sternen und sternähnlichen Objekten – von massereichen Objekten, die mehrere Dutzend Sonnenmassen in sich vereinigen, bis hin zu Objekten, die als "Braune Zwerge" bezeichnet werden und zu wenig Masse haben, um durch Wasserstofffusion Sterne zu werden. Das Besondere am Orionnebel ist, dass er unter allen bekannten Sternen-Geburtsstätten der Erde am nächsten liegt. Dadurch ermöglicht er es der Wissenschaft, den Übergang von diffusem Gas zu wasserstoff-fusionierenden Sternen, substellaren Objekten und Planeten besser zu verstehen. Der Orionnebel wurde so zum "goldenen Standard" für Studien über Sternentstehung. Viele Maßzahlen und klassische Sternentstehungsmodelle nehmen den Ausgang von ihm.

Neue Erkenntnis: massereicher Sternenhaufen vor dem Orionnebel

Doch jüngste Beobachtungen am spanischen Calar Alto Observatory mit dem Canadian-French Hawaii Telescope (CFHT) und dem Sloan Digital Sky Survey (SDSS) führten nun zu einer überraschenden "Perspektiven-Korrektur": "Es gibt noch einen zweiten massereichen Haufen aus etwas älteren Sternen, der von uns aus gesehen 'vor' dem Orionnebel steht", berichtet João Alves, Professor für Stellare Astrophysik der Universität Wien. Zwar war dieser zweite Haufen schon seit den 1960er-Jahren bekannt, aber die CHFT-Beobachtungen zeigten erst jetzt, wie viel Masse in ihm steckt. All diese Masse ist nicht gleichförmig verteilt, sondern um den Stern Iota Orionis konzentriert, der die südliche Spitze des "Schwerts des Orion" bildet.

Diese Erkenntnis ist in zwei Hinsichten bedeutend: Erstens zeigt sie auf, dass es sich bei dem identifizierten Sternhaufen um einen nur geringfügig älteren "Bruder" des "Trapez-Haufens" im Zentrum des Orion-Nebels handelt; zweitens ergibt sich jetzt, dass der "Orionnebel-Haufen" in Wirklichkeit eine komplizierte Mischung aus zwei Sternhaufen sowie einigen damit nicht zusammenhängenden Milchstraßen-Sternen ist.

João Alves erklärt: "Für mich ist das größte Rätsel, warum der etwas ältere Sternhaufen (der Iota-Orionis-Haufen) so nahe an dem jüngeren Haufen liegt, der sich im Inneren des Orionnebels noch bildet". Es ist noch völlig offen, wie diese neuen Beobachtungsbefunde mit gängigen Modellen der Sternhaufen-Entstehung zu vereinbaren sein werden. "Wir scheinen etwas Fundamentales noch nicht verstanden zu haben. Die Bildung von Sternhaufen ist wahrscheinlich der dominante Weg zur Sternentstehung im Universum, aber wir sind weit entfernt davon, genau zu wissen, warum."

Hervé Bouy vom Centro de Astrobiologia in Madrid und Mitautor der Studie ergänzt dazu: "Wir müssen unsere Vorstellungen von den Beobachtungsgrößen revidieren, die wir bisher für die zuverlässigsten Indikatoren der Stern- und Sternhaufen-Entstehung hielten". Bouy weist auf die Notwendigkeit weiterer Beobachtungen hin, um die beiden vermischten Sternpopulationen – Stern für Stern – auseinanderhalten zu können. "Denn nur dadurch können wir die Stern- und auch die Planetenentstehung in der Region des Orionnebels verstehen."

Publikation:
Astronomy & Astrophysics: Orion revisited. The massive cluster in front of the Orion nebula cluster. J. Alves, H. Bouy. November 2012.

Wissenschaftliche Kontakte
Univ.-Prof. João Alves, PhD
Institut für Astrophysik
Universität Wien
1180 Wien, Türkenschanzstraße 17
T +43-1-42 77-538 10
joao.alves@univie.ac.at

DDr. Thomas Posch
Institut für Astrophysik
Universität Wien
1180 Wien, Türkenschanzstraße 17
T +43-1-42 77-538 00
thomas.posch@univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
Universitätsring 1, 1010 Wien
T +43-1-4277-175 30
M +43-664-60277-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://dx.doi.org/10.1051/0004-6361/201220119
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sei mit STARS4ALL dabei, wenn Merkur vor die Sonne wandert
04.05.2016 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht MICROSCOPE sendet
04.05.2016 | Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sei mit STARS4ALL dabei, wenn Merkur vor die Sonne wandert

2012 war es die Venus, in diesem Jahr ist der Planet Merkur dran, vor der Sonne zu passieren. Für fast acht Stunden werden wir am 9. Mai 2016 die Möglichkeit haben, den Planeten Merkur als kleinen schwarzen Punkt auf der Oberfläche der Sonne durchziehen zu sehen. Das EU-Projekt STARS4ALL, an dem auch das IGB beteiligt ist, wird in Zusammenarbeit mit www.sky-live.tv das Phänomen von Teneriffa und von Island aus live übertragen. STARS4ALL bietet dazu Bildungsmaterial für Schüler an.

Am 9. Mai 2016, um die Mittagszeit, wird der Planet Merkur anfangen, die Scheibe der Sonne zu kreuzen; eine Reise, welche über sieben Stunden dauern wird.

Im Focus: MICROSCOPE sendet

Am Montag, 2. Mai 2016, erreichte die Wissenschaftlerinnen und Wissenschaftler vom Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen die erste Erfolgsmeldung von ihrem Forschungs-Satelliten. Per Videoübertragung waren sie zugeschaltet, als die französischen Kollegen das Experiment an Bord von MICROSCOPE (MICRO Satellite à traînée Compensée pour l'Observation du Principe d'Equivalence) initialisierten und das Messinstrument die ersten Testdaten übermittelte. Damit ist der wichtigste Meilenstein der Testphase erreicht, bevor sich herausstellt, ob Einsteins Relativitätstheorie auch nach dieser Satellitenmission noch Bestand haben wird.

“#TSAGE @onera_fr is on. The test masses have been released and servo looped!!!! Great all green“ lautet die Twitter-Nachricht der französischen Partner, die...

Im Focus: Genauester Spiegel der Welt bei European XFEL in Hamburg eingetroffen

Der vermutlich präziseste Spiegel der Welt ist bei European XFEL in der Metropolregion Hamburg eingetroffen. Der 95 Zentimeter lange Spiegel ist ein wichtiges Bauteil des Röntgenlasers, der 2017 in Betrieb gehen soll. Auf den ersten Blick sieht er einem normalen Spiegel durchaus ähnlich, ist jedoch extrem flach und glatt. Die größten Unebenheiten auf seiner Oberfläche haben eine Dimension von gerade einmal einem Nanometer, einem milliardstel Meter. Diese Präzision entspräche einer 40 Kilometer langen Straße, deren maximale Unebenheit gerade einmal so groß ist wie der Durchmesser eines Haars.

Der Röntgenspiegel ist der erste von mehreren, die an unterschiedlichen Stellen der Anlage zum Spiegeln und Filtern des Röntgenlaserstrahls eingebaut werden....

Im Focus: Erste Filmaufnahmen von Kernporen

Mithilfe eines extrem schnellen und präzisen Rasterkraftmikroskops haben Forscher der Universität Basel erstmals «lebendige» Kernporenkomplexe bei der Arbeit gefilmt. Kernporen sind molekulare Maschinen, die den Verkehr in und aus dem Zellkern kontrollieren. In ihrem kürzlich in «Nature Nanotechnology» publizierten Artikel erklären die Forscher, wie bewegliche «Tentakeln» in der Pore die Passage von unerwünschten Molekülen verhindern.

Das Rasterkraftmikroskop (AFM) ist kein Mikroskop zum Durchschauen. Es tastet wie ein Blinder mit seinen Fingern die Oberflächen mit einer extrem feinen Spitze...

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress in Berlin beginnt heute

04.05.2016 | Veranstaltungen

UFW-Fachtagung im Vorzeichen von Big Data und Industrie 4.0

03.05.2016 | Veranstaltungen

analytica conference 2016 in München - Foodomics, mehr als nur ein Modebegriff?

03.05.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Beim Laden von Lithium-Luft-Akkus entsteht hochreaktiver Singulett-Sauerstoff

04.05.2016 | Energie und Elektrotechnik

Sei mit STARS4ALL dabei, wenn Merkur vor die Sonne wandert

04.05.2016 | Physik Astronomie

Mehr als eine mechanische Barriere - Epithelzellen kämpfen aktiv gegen das Grippevirus

04.05.2016 | Biowissenschaften Chemie