Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optomechanischer Transistor für Licht

12.11.2010
Forscher an der Ecole Polytechnique Fédérale de Lausanne (EPFL) und am Max-Planck-Institut für Quantenoptik (MPQ) entdecken einen Effekt, der die rein optische Schaltung von Licht auf einem Chip ermöglicht.

Kernstück der modernen Telekommunikationstechnik ist die Möglichkeit, die Ausbreitung von Licht – dem Kommunikationsträger – gezielt zu steuern. Forscher im „Laboratory of Photonics and Quantum Measurement“ unter Leitung von Prof. Tobias J. Kippenberg (EPFL) haben jetzt ein neuartiges Prinzip entdeckt, mit dem sich dies erreichen lässt.


Kolorierte Aufnahme eines Mikroresonators, an dem die OMIT-Untersuchung durchgeführt wurde, mit einem Raster-Elektronen-Mikroskop. Der (oben sichtbare) rote Teil ist ein Silizium-Toroid, der gestützt wird von einer auf einem Halbleiterchip gefertigten Siliziumsäule (grau). Der Glas-Toroid ist ein exzellenter optischer Resonator für Photonen und unterstützt gleichzeitig mechanische Schwingungen. Die gegenseitige Kopplung von Photonen und Phononen kann benutzt werden, um die Ausbreitung von Licht zu steuern.

Es basiert auf der Wechselwirkung von Licht, sprich Photonen, mit mechanischen Schwingungen, d.h. Phononen. Diese Kopplung erlaubt es, die Transmission eines Lichtstrahls durch einen Chip-basierten Mikroresonator direkt mit einen zweiten, stärkeren Lichtstrahl zu kontrollieren. Die neue Methode könnte zahlreiche Anwendungen finden, von der Telekommunikation bis zur Quanteninformations-technologie (Science Express, 11. November 2010).

Ein entsprechender Effekt wurde bereits in der Wechselwirkung von Laserlicht mit atomaren Gasen beobachtet und wird als „elektromagnetisch induzierte Transparenz“ (EIT) bezeichnet. Mit EIT lässt sich die Ausbreitung von Licht auf beeindruckende Weise steuern: man kann damit Lichtpulse verlangsamen und sogar vollständig abspeichern. Allerdings beschränkt sich die Anwendung von EIT dabei auf Wellenlängen, die den natürlichen Anregungsenergien der Atome entsprechen. Auch lässt sich diese Methode nur schwer mit der Chipfabrikation vereinbaren.

Das neue Prinzip – gemeinsam entdeckt von einem Wissenschaftlerteam um Dr. Albert Schließer und Dr. Samuel Deléglise sowie den Physikdoktoranden Stefan Weis und Rémi Rivière – basiert auf der optomechanischen Kopplung von Lichtquanten an mechanische Schwingungen in einem optomechanischen Resonator. Die hier verwendeten Toroide werden in einem Reinraum der EPFL mit den für integrierte Halbleiterschaltkreise üblichen Verfahren der Nanofabrikation hergestellt. Sie lassen das eingefangene Licht umlaufen und wirken gleichzeitig wie ein mechanischer Oszillator, wobei sie, wie eine Stimmgabel, fest definierte mechanische Eigenfrequenzen besitzen.

Wird Licht in den Resonator eingekoppelt, dann üben die Photonen einen Strahlungsdruck auf dessen Wände aus. Schon seit Jahrzehnten wird diese Kraft eingesetzt, um Atome einzufangen und zu kühlen. Doch erst seit rund fünf Jahren nutzen die Wissenschaftler den Strahlungsdruck, um mechanische Schwingungen auf der Mikro- oder gar Nanoskala zu steuern. Diese Experimente mündeten in die Etablierung eines neuen Forschungsgebietes: der Resonator-Optomechanik, die die Photonik mit der Mikro- und Nanomechanik vereinigt. Der üblicherweise geringe Strahlungsdruck wird in einem optomechanischen Mikroresonator erheblich verstärkt und kann, indem er das Licht an die mechanischen Schwingungen koppelt, die Wände des Resonators verformen. Um die optische Durchlässigkeit des Toroids ein- bzw. auszuschalten, wird ein zweiter Laser, dessen Frequenz leicht gegen die des Signallasers verschoben ist, angekoppelt. Die Präsenz beider Laser führt zu einer Modulation der Lichtkraft bei einer Eigenfrequenz des Toroids, so dass dieser anfängt zu schwingen. Unter diesen Bedingungen verhindert ein optomechanischer Interferenzeffekt, dass das Licht des Signallasers in den Resonator gekoppelt wird. Dadurch kann der Signalstrahl den optomechanischen Schalter letztlich ungehindert passieren.

Lange Zeit konnte dieser Effekt nicht nachgewiesen werden, obwohl „wir schon seit mehr als zwei Jahren wissen, dass dieses Phänomen auftreten müsste“, meint Dr. Schließer, der dieses Verhalten schon früh aus theoretischen Modellen ableitete. „Sobald wir wussten, in welchem Frequenzbereich wir suchen müssen, haben wir den Effekt direkt gefunden“, sagt Stefan Weis, einer der Hauptautoren der Publikation. In den nachfolgenden Messungen „war die Übereinstimmung von Theorie und Experiment wirklich bemerkenswert“, fügt Dr. Deléglise hinzu.

Im Gegensatz zu der bei Atomen auftretenden EIT beruht diese neue Form der induzierten Transparenz nicht auf natürlichen Resonanzen. Sie könnte daher auf bislang unzugängliche Wellenlängenbereiche angewandt werden wie etwa dem für die Telekommunikation wichtigen Frequenzfenster im Nahen Infrarot. Mit Standardtechniken aus der mikro- und nanoskaligen Chipfabrikation gestatten optomechanische Systeme eine fast unbegrenzte Freiheit im Design. Außerdem lässt sich schon mit einem einzigen optomechanischen Element ein nahezu 100%iger Ein-Aus-Kontrast erzielen, was im atomaren Fall meist nicht möglich ist.

Der neue, von seinen Entdeckern „OMIT“ (optomechanisch induzierte Transparenz) getaufte Effekt kann die Photonik um eine Reihe von Funktionalitäten bereichern. Zukünftige auf OMIT beruhende Entwicklungen könnten die Umwandlung eines Photonenstroms in mechanische Anregungen – Phononen – ermöglichen. Eine solche Umwandlung von Radiofrequenzsignalen in mechanische Schwingungen wird zum Beispiel heute in Mobilfunkempfängern zur Schmalband-Filterung verwendet. Dieses Prinzip könnte genauso gut auf optische Signale ausgedehnt werden. Darüber hinaus könnten mit OMIT neuartige optische Zwischenspeicher verwirklicht werden, in denen optische Information bis zu mehrere Sekunden lang gehalten werden kann.

Doch auch die Grundlagenforschung kann von dieser Entdeckung profitieren: Weltweit versuchen Forschergruppen, optomechanische Systeme auf Quantenniveau zu steuern. Eine Kopplung, die sich ein- und ausschalten lässt, könnte sich als wichtige Schnittstelle in hybriden Quantensystemen erweisen.Olivia Meyer-Streng

Originalveröffentlichung:
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T.J. Kippenberg
"Optomechanically induced transparency"
Science (Science Express, November 11, 2010)
Kontakt:
http://www.mpq.mpg.de/k-lab/
Prof. Dr. Tobias Kippenberg
Max-Planck-Institut für Quantenoptik und
Ecole Polytechnique Fédérale de Lausanne
Tel.: +41 - 79 / 5350 016
E-Mail: tobias.kippenberg@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/k-lab/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten