Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optomechanischer Transistor für Licht

12.11.2010
Forscher an der Ecole Polytechnique Fédérale de Lausanne (EPFL) und am Max-Planck-Institut für Quantenoptik (MPQ) entdecken einen Effekt, der die rein optische Schaltung von Licht auf einem Chip ermöglicht.

Kernstück der modernen Telekommunikationstechnik ist die Möglichkeit, die Ausbreitung von Licht – dem Kommunikationsträger – gezielt zu steuern. Forscher im „Laboratory of Photonics and Quantum Measurement“ unter Leitung von Prof. Tobias J. Kippenberg (EPFL) haben jetzt ein neuartiges Prinzip entdeckt, mit dem sich dies erreichen lässt.


Kolorierte Aufnahme eines Mikroresonators, an dem die OMIT-Untersuchung durchgeführt wurde, mit einem Raster-Elektronen-Mikroskop. Der (oben sichtbare) rote Teil ist ein Silizium-Toroid, der gestützt wird von einer auf einem Halbleiterchip gefertigten Siliziumsäule (grau). Der Glas-Toroid ist ein exzellenter optischer Resonator für Photonen und unterstützt gleichzeitig mechanische Schwingungen. Die gegenseitige Kopplung von Photonen und Phononen kann benutzt werden, um die Ausbreitung von Licht zu steuern.

Es basiert auf der Wechselwirkung von Licht, sprich Photonen, mit mechanischen Schwingungen, d.h. Phononen. Diese Kopplung erlaubt es, die Transmission eines Lichtstrahls durch einen Chip-basierten Mikroresonator direkt mit einen zweiten, stärkeren Lichtstrahl zu kontrollieren. Die neue Methode könnte zahlreiche Anwendungen finden, von der Telekommunikation bis zur Quanteninformations-technologie (Science Express, 11. November 2010).

Ein entsprechender Effekt wurde bereits in der Wechselwirkung von Laserlicht mit atomaren Gasen beobachtet und wird als „elektromagnetisch induzierte Transparenz“ (EIT) bezeichnet. Mit EIT lässt sich die Ausbreitung von Licht auf beeindruckende Weise steuern: man kann damit Lichtpulse verlangsamen und sogar vollständig abspeichern. Allerdings beschränkt sich die Anwendung von EIT dabei auf Wellenlängen, die den natürlichen Anregungsenergien der Atome entsprechen. Auch lässt sich diese Methode nur schwer mit der Chipfabrikation vereinbaren.

Das neue Prinzip – gemeinsam entdeckt von einem Wissenschaftlerteam um Dr. Albert Schließer und Dr. Samuel Deléglise sowie den Physikdoktoranden Stefan Weis und Rémi Rivière – basiert auf der optomechanischen Kopplung von Lichtquanten an mechanische Schwingungen in einem optomechanischen Resonator. Die hier verwendeten Toroide werden in einem Reinraum der EPFL mit den für integrierte Halbleiterschaltkreise üblichen Verfahren der Nanofabrikation hergestellt. Sie lassen das eingefangene Licht umlaufen und wirken gleichzeitig wie ein mechanischer Oszillator, wobei sie, wie eine Stimmgabel, fest definierte mechanische Eigenfrequenzen besitzen.

Wird Licht in den Resonator eingekoppelt, dann üben die Photonen einen Strahlungsdruck auf dessen Wände aus. Schon seit Jahrzehnten wird diese Kraft eingesetzt, um Atome einzufangen und zu kühlen. Doch erst seit rund fünf Jahren nutzen die Wissenschaftler den Strahlungsdruck, um mechanische Schwingungen auf der Mikro- oder gar Nanoskala zu steuern. Diese Experimente mündeten in die Etablierung eines neuen Forschungsgebietes: der Resonator-Optomechanik, die die Photonik mit der Mikro- und Nanomechanik vereinigt. Der üblicherweise geringe Strahlungsdruck wird in einem optomechanischen Mikroresonator erheblich verstärkt und kann, indem er das Licht an die mechanischen Schwingungen koppelt, die Wände des Resonators verformen. Um die optische Durchlässigkeit des Toroids ein- bzw. auszuschalten, wird ein zweiter Laser, dessen Frequenz leicht gegen die des Signallasers verschoben ist, angekoppelt. Die Präsenz beider Laser führt zu einer Modulation der Lichtkraft bei einer Eigenfrequenz des Toroids, so dass dieser anfängt zu schwingen. Unter diesen Bedingungen verhindert ein optomechanischer Interferenzeffekt, dass das Licht des Signallasers in den Resonator gekoppelt wird. Dadurch kann der Signalstrahl den optomechanischen Schalter letztlich ungehindert passieren.

Lange Zeit konnte dieser Effekt nicht nachgewiesen werden, obwohl „wir schon seit mehr als zwei Jahren wissen, dass dieses Phänomen auftreten müsste“, meint Dr. Schließer, der dieses Verhalten schon früh aus theoretischen Modellen ableitete. „Sobald wir wussten, in welchem Frequenzbereich wir suchen müssen, haben wir den Effekt direkt gefunden“, sagt Stefan Weis, einer der Hauptautoren der Publikation. In den nachfolgenden Messungen „war die Übereinstimmung von Theorie und Experiment wirklich bemerkenswert“, fügt Dr. Deléglise hinzu.

Im Gegensatz zu der bei Atomen auftretenden EIT beruht diese neue Form der induzierten Transparenz nicht auf natürlichen Resonanzen. Sie könnte daher auf bislang unzugängliche Wellenlängenbereiche angewandt werden wie etwa dem für die Telekommunikation wichtigen Frequenzfenster im Nahen Infrarot. Mit Standardtechniken aus der mikro- und nanoskaligen Chipfabrikation gestatten optomechanische Systeme eine fast unbegrenzte Freiheit im Design. Außerdem lässt sich schon mit einem einzigen optomechanischen Element ein nahezu 100%iger Ein-Aus-Kontrast erzielen, was im atomaren Fall meist nicht möglich ist.

Der neue, von seinen Entdeckern „OMIT“ (optomechanisch induzierte Transparenz) getaufte Effekt kann die Photonik um eine Reihe von Funktionalitäten bereichern. Zukünftige auf OMIT beruhende Entwicklungen könnten die Umwandlung eines Photonenstroms in mechanische Anregungen – Phononen – ermöglichen. Eine solche Umwandlung von Radiofrequenzsignalen in mechanische Schwingungen wird zum Beispiel heute in Mobilfunkempfängern zur Schmalband-Filterung verwendet. Dieses Prinzip könnte genauso gut auf optische Signale ausgedehnt werden. Darüber hinaus könnten mit OMIT neuartige optische Zwischenspeicher verwirklicht werden, in denen optische Information bis zu mehrere Sekunden lang gehalten werden kann.

Doch auch die Grundlagenforschung kann von dieser Entdeckung profitieren: Weltweit versuchen Forschergruppen, optomechanische Systeme auf Quantenniveau zu steuern. Eine Kopplung, die sich ein- und ausschalten lässt, könnte sich als wichtige Schnittstelle in hybriden Quantensystemen erweisen.Olivia Meyer-Streng

Originalveröffentlichung:
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T.J. Kippenberg
"Optomechanically induced transparency"
Science (Science Express, November 11, 2010)
Kontakt:
http://www.mpq.mpg.de/k-lab/
Prof. Dr. Tobias Kippenberg
Max-Planck-Institut für Quantenoptik und
Ecole Polytechnique Fédérale de Lausanne
Tel.: +41 - 79 / 5350 016
E-Mail: tobias.kippenberg@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/k-lab/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie