Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optische Atomuhr wird transportabel

31.08.2009
PTB-Forscher wollen "Atomuhr der Zukunft" viel einfacher und kompakter konstruieren als die bisherigen aufwendigen Laboraufbauten

Eine Uhr stellt man sich anders vor - doch der optische Tisch mit seinen vielen komplizierten Aufbauten ist tatsächlich eine. Optische Uhren wie die Strontium-Uhr in der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig könnten sogar die Atomuhren der Zukunft werden; sind doch einige von ihnen jetzt schon zehnmal genauer und stabiler als die besten primären Cäsium-Atomuhren.

Nun könnten sie auch kompakter und sogar transportabel werden, vielleicht in Zukunft gar in den Weltraum fliegen. PTB-Wissenschaftler haben gezeigt, wie einige prinzipielle Schwierigkeiten, die einen einfacheren Aufbau bisher verhindert hatten, vermieden werden können. Darüber berichten sie in der aktuellen Ausgabe der Zeitschrift Physical Review Letters. Im nächsten Schritt wollen sie eine solche Uhr bauen. Auch eine praktische Anwendung schwebt ihnen bereits vor: Die Uhr könnte helfen, geographische Höhen noch genauer als bisher zu bestimmen.

Eine optische Uhr ist so genau, weil ihr "Pendel" so schnell schwingt. Dahinter steckt derselbe Effekt, der eine Quarzuhr genauer als etwa eine klassische Standuhr macht: Das periodisch schwingende Element darin, der Schwingquarz, bewegt sich um ein Vielfaches schneller als das Standuhr-Pendel; so lässt sich die Skala gewissermaßen feiner aufteilen und auch feiner kontrollieren. Noch schneller schwingt das "Pendel" einer Cäsium-Atomuhr: nämlich jene Mikrowellenstrahlung, die in jeweils einem Elektron eines Cäsiumatoms eine Spin-Änderung bewirken kann. Genau die Mikrowellenfrequenz, bei der dieser Effekt am größten ist, definiert die Sekunde. Eine optische Atomuhr arbeitet mit der noch höheren Frequenz von optischer Strahlung - also mit einem noch schnelleren Pendel.

Das Ganze funktioniert aber nur, wenn die Atome zuvor gekühlt werden. Weil wild herumzappelnde Atome durch den Dopplereffekt zu sehr großen Frequenzverschiebungen führen, werden in den besten dieser Uhren die Atome in einem ersten Präparationsschritt mit Hilfe von Laserkühlung auf ein Hundertstel der Geschwindigkeit eines Fußgängers gebremst. Das kennt man auch schon von den Cäsium-Fontänenuhren. In einer optischen Gitteruhr folgt dann noch ein weiterer Schritt, in dem die Atome in Potentialmulden, erzeugt durch das intensive Lichtfeld eines Lasers, festgehalten werden. Das ist das optische Gitter, das der Uhr ihren Namen gegeben hat. Mehrere zehntausend Strontiumatome stecken darin gewissermaßen fest. Dieser Trick schränkt die Bewegung der Atome auf den Bruchteil einer optischen Wellenlänge ein, sodass Verschiebungen durch den Dopplereffekt vernachlässigt werden können.

In jeder Potentialmulde sind einige hundert Atome gefangen, die sich gegenseitig stören können. Verwendet man das Isotop Strontium-87, ein Fermion, kommen sich aufgrund des Pauli-Prinzips zwei dieser Teilchen bei sehr niedrigen Temperaturen nicht nahe. Das ist der Grund, warum bisherige optische Gitteruhren mit diesem Strontium-Isotop konstruiert wurden. Aber leider hat dieses Isotop nur eine natürliche Häufigkeit von 7 % und lässt sich zudem nur mit großem Aufwand mit Laserlicht kühlen. Daher ist es für einfache, transportable oder gar weltraumtaugliche Uhren prinzipiell schlechter geeignet.

Das mit über 80 % häufigste Isotop Strontium-88, das sich auch einfacher kühlen lässt, ist allerdings ein Boson. Das heißt, selbst bei niedrigsten Temperaturen treten unter den Atomen viele Stöße auf. Sie können zu Verlusten und zu einer Verschiebung und Verbreiterung der Referenzlinie führen. Wie stark diese Stöße die Genauigkeit der Uhr beeinflussen, war bisher allerdings nicht bekannt. Die PTB-Wissenschaftler haben diese Einflüsse nun zum ersten Mal detailliert gemessen. Aus den Ergebnisse können die Forscher ableiten, wie das optische Gitter dimensioniert sein muss und wie viele Atome darin gespeichert werden dürfen, um auch mit Strontium-88 eine sehr genaue Gitteruhr zu betreiben. Auf dieser Grundlage wollen sie jetzt eine Uhr bauen, die kompakter und transportabler als bisherige Gitteruhren ist.

Als möglicher erster Einsatz wird diskutiert, die Uhr zur präzisen Bestimmung der Höhe eines Punktes über dem Geoid (also gewissermaßen dem Normal-Null der Gravitationskräfte der Erde) zu verwenden. Damit könnte die neue Uhr beispielsweise Gravitationskarten noch genauer machen.

Ansprechpartner:
Christian Lisdat, PTB-Arbeitsgruppe 4.32 Quantenoptik mit kalten Atomen,
Tel.: (0531) 592-4326, E-Mail: christian.lisdat@ptb.de
Die Originalveröffentlichung:
Collissional losses, decoherence, and frequency shifts in optical lattice clocks with bosons. Ch. Lis-dat, J.S.R. Vellore Winfred, T. Middelmann, F. Riehle, U.Sterr, Phys. Rev. Lett. 103, No.9 (2009), DOI: 10.1103/PhysRevLett.103.090801, http://link.aps.org/abstract/PRL/v103/e090801

Erika Schow | idw
Weitere Informationen:
http://link.aps.org/abstract/PRL/v103/e090801
http://www.ptb.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics