Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optische Atomuhr wird transportabel

31.08.2009
PTB-Forscher wollen "Atomuhr der Zukunft" viel einfacher und kompakter konstruieren als die bisherigen aufwendigen Laboraufbauten

Eine Uhr stellt man sich anders vor - doch der optische Tisch mit seinen vielen komplizierten Aufbauten ist tatsächlich eine. Optische Uhren wie die Strontium-Uhr in der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig könnten sogar die Atomuhren der Zukunft werden; sind doch einige von ihnen jetzt schon zehnmal genauer und stabiler als die besten primären Cäsium-Atomuhren.

Nun könnten sie auch kompakter und sogar transportabel werden, vielleicht in Zukunft gar in den Weltraum fliegen. PTB-Wissenschaftler haben gezeigt, wie einige prinzipielle Schwierigkeiten, die einen einfacheren Aufbau bisher verhindert hatten, vermieden werden können. Darüber berichten sie in der aktuellen Ausgabe der Zeitschrift Physical Review Letters. Im nächsten Schritt wollen sie eine solche Uhr bauen. Auch eine praktische Anwendung schwebt ihnen bereits vor: Die Uhr könnte helfen, geographische Höhen noch genauer als bisher zu bestimmen.

Eine optische Uhr ist so genau, weil ihr "Pendel" so schnell schwingt. Dahinter steckt derselbe Effekt, der eine Quarzuhr genauer als etwa eine klassische Standuhr macht: Das periodisch schwingende Element darin, der Schwingquarz, bewegt sich um ein Vielfaches schneller als das Standuhr-Pendel; so lässt sich die Skala gewissermaßen feiner aufteilen und auch feiner kontrollieren. Noch schneller schwingt das "Pendel" einer Cäsium-Atomuhr: nämlich jene Mikrowellenstrahlung, die in jeweils einem Elektron eines Cäsiumatoms eine Spin-Änderung bewirken kann. Genau die Mikrowellenfrequenz, bei der dieser Effekt am größten ist, definiert die Sekunde. Eine optische Atomuhr arbeitet mit der noch höheren Frequenz von optischer Strahlung - also mit einem noch schnelleren Pendel.

Das Ganze funktioniert aber nur, wenn die Atome zuvor gekühlt werden. Weil wild herumzappelnde Atome durch den Dopplereffekt zu sehr großen Frequenzverschiebungen führen, werden in den besten dieser Uhren die Atome in einem ersten Präparationsschritt mit Hilfe von Laserkühlung auf ein Hundertstel der Geschwindigkeit eines Fußgängers gebremst. Das kennt man auch schon von den Cäsium-Fontänenuhren. In einer optischen Gitteruhr folgt dann noch ein weiterer Schritt, in dem die Atome in Potentialmulden, erzeugt durch das intensive Lichtfeld eines Lasers, festgehalten werden. Das ist das optische Gitter, das der Uhr ihren Namen gegeben hat. Mehrere zehntausend Strontiumatome stecken darin gewissermaßen fest. Dieser Trick schränkt die Bewegung der Atome auf den Bruchteil einer optischen Wellenlänge ein, sodass Verschiebungen durch den Dopplereffekt vernachlässigt werden können.

In jeder Potentialmulde sind einige hundert Atome gefangen, die sich gegenseitig stören können. Verwendet man das Isotop Strontium-87, ein Fermion, kommen sich aufgrund des Pauli-Prinzips zwei dieser Teilchen bei sehr niedrigen Temperaturen nicht nahe. Das ist der Grund, warum bisherige optische Gitteruhren mit diesem Strontium-Isotop konstruiert wurden. Aber leider hat dieses Isotop nur eine natürliche Häufigkeit von 7 % und lässt sich zudem nur mit großem Aufwand mit Laserlicht kühlen. Daher ist es für einfache, transportable oder gar weltraumtaugliche Uhren prinzipiell schlechter geeignet.

Das mit über 80 % häufigste Isotop Strontium-88, das sich auch einfacher kühlen lässt, ist allerdings ein Boson. Das heißt, selbst bei niedrigsten Temperaturen treten unter den Atomen viele Stöße auf. Sie können zu Verlusten und zu einer Verschiebung und Verbreiterung der Referenzlinie führen. Wie stark diese Stöße die Genauigkeit der Uhr beeinflussen, war bisher allerdings nicht bekannt. Die PTB-Wissenschaftler haben diese Einflüsse nun zum ersten Mal detailliert gemessen. Aus den Ergebnisse können die Forscher ableiten, wie das optische Gitter dimensioniert sein muss und wie viele Atome darin gespeichert werden dürfen, um auch mit Strontium-88 eine sehr genaue Gitteruhr zu betreiben. Auf dieser Grundlage wollen sie jetzt eine Uhr bauen, die kompakter und transportabler als bisherige Gitteruhren ist.

Als möglicher erster Einsatz wird diskutiert, die Uhr zur präzisen Bestimmung der Höhe eines Punktes über dem Geoid (also gewissermaßen dem Normal-Null der Gravitationskräfte der Erde) zu verwenden. Damit könnte die neue Uhr beispielsweise Gravitationskarten noch genauer machen.

Ansprechpartner:
Christian Lisdat, PTB-Arbeitsgruppe 4.32 Quantenoptik mit kalten Atomen,
Tel.: (0531) 592-4326, E-Mail: christian.lisdat@ptb.de
Die Originalveröffentlichung:
Collissional losses, decoherence, and frequency shifts in optical lattice clocks with bosons. Ch. Lis-dat, J.S.R. Vellore Winfred, T. Middelmann, F. Riehle, U.Sterr, Phys. Rev. Lett. 103, No.9 (2009), DOI: 10.1103/PhysRevLett.103.090801, http://link.aps.org/abstract/PRL/v103/e090801

Erika Schow | idw
Weitere Informationen:
http://link.aps.org/abstract/PRL/v103/e090801
http://www.ptb.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics