Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Sonderforschungsbereich für nichtlineare Dynamik

17.11.2010
Berlins Stellung als Forschungsstandort der theoretischen Physik und angewandten Mathematik entscheidend gestärkt

Die Deutsche Forschungsgemeinschaft (DFG) hat die Einrichtung des Sonderforschungsbereiches 910 (Sfb) zur Kontrolle nichtlinearer Systeme an der TU Berlin bewilligt. Damit wird Berlins Stellung als führender Forschungsstandort auf dem interdisziplinären Gebiet der nichtlinearen Dynamik national und international weiter ausgebaut. Sprecher des Sfb ist Prof. Dr. Eckehard Schöll, PhD vom Institut für Theoretische Physik der TU Berlin.

Unter dem Titel „Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzepte” werden 17 Teilprojektleiterinnen und Teilprojektleiter aus drei Berliner Universitäten und drei außeruniversitären Forschungseinrichtungen an innovativen Kontrollstrategien und -methoden forschen. Der Sonderforschungsbereich ist theoretisch-methodisch orientiert und hat seinen Schwerpunkt in der Entwicklung neuartiger theoretischer Konzepte. Als Anwendungen werden Halbleiterquantenstrukturen und Nanokavitäten, weiche Materie im Nichtgleichgewicht, wie Kolloidsysteme und aktive Biomembranen, und neuronale Systeme und Netzwerke betrachtet.

Laufzeit und Fördermittel
Während der ersten Förderperiode von vier Jahren fließen rund sieben Millionen Euro Drittmittel von der DFG in den Sonderforschungsbereich. Geplant ist eine Gesamtlaufzeit von zwölf Jahren in drei Förderperioden mit einem Gesamtfördervolumen von mehr als 22 Millionen Euro.
Thematische Schwerpunkte und Zielsetzungen
Selbstorganisation, das heißt die spontane Bildung zeitlicher, räumlicher oder raum-zeitlicher Strukturen fern vom thermodynamischen Gleichgewicht, ist weit verbreitet in dissipativen, nichtlinearen, dynamischen Systemen in Physik, Chemie und Biologie. Das Ziel des Sfb ist es, solche dissipativen Strukturen wie Spiralwellen im Herzen und Gehirn gezielt zu kontrollieren und zu generieren. Durch die interdisziplinäre Zusammenarbeit zwischen angewandten Mathematikern, theoretischen Physikern und Neuro-Informatikern werden neue Kontrollkonzepte und Kontrollmethoden entwickelt und auf ausgewählte Modellsysteme angewendet. Diese reichen von kondensierter Materie bis zu biologischen Systemen und um-fassen räumliche Skalen von Nanometer bis Mikro- und Millimeter. Dabei sollen verschiedene Kontrollbegriffe aus der nichtlinearen Dynamik und Chaoskontrolle, der klassischen Steuerungs- und Optimierungstheorie und der Quantenkontrolle zusammengeführt werden. „Ein wichtiges Konzept stellen Rückkopplungsschleifen dar, um instabile Zustände zu stabilisieren. Ein Beispiel hierfür ist die zeitverzögerte Rückkopplungskontrolle, die vielseitige Anwendungen finden kann zum Beispiel bei Lasern, in komplexen Netzwerken, in chemisch aktiven Systemen oder in der Biologie und Medizin, etwa bei Herzrhythmusstörungen und der Bekämpfung von Parkinson und Epilepsie“, erklärt Eckehard Schöll, dessen Arbeitsgruppe in den vergangenen Jahren Pionierarbeit bei der Entwicklung der zeitverzögerten Rückkopplungskontrolle geleistet hat.

Eine Langzeitvision dieses Sonderforschungsbereichs sind völlig neuarti-ge Anwendungen der Kontrollkonzepte der nichtlinearen Dynamik, etwa in der verschlüsselten optischen Kommunikation mit chaotischen Lasern oder bei neuartigen Therapien für Migräne und Schlaganfall. Weiterhin betreten die Wissenschaftlerinnen und Wissenschaftler im Bereich der weichen Materie mit ihren Kontrollkonzepten Neuland, aus dem beispielsweise neuartige intelligente weiche Materialien erwachsen können.

Mutige Berufungspolitik und hervorragende Rahmenbedingungen
Durch eine mutige und wegweisende Berufungspolitik am Institut für Theoretische Physik der TU Berlin während der vergangenen Dekade ist die nichtlineare Physik als ein profilgebender Schwerpunkt etabliert worden. Dadurch wurden die Weichen gestellt, die diesen Forschungsverbund ermöglichten. Die international führende Rolle des Standorts Berlin auf dem Gebiet der nichtlinearen Dynamik ist durch das ausgezeichnete interdisziplinäre wissenschaftliche Umfeld gekennzeichnet, in dem Wissenschaftler der TU Berlin, der FU Berlin, der Humboldt-Universität zu Berlin und zahlreicher außeruniversitärer Einrichtungen bereits seit Jahren zusammenarbeiten; stellvertretend sei der im Juni 2010 ausgelaufene Sonderforschungsbereich 555 „Komplexe nichtlineare Prozesse” genannt. Dessen Gründungsmitglied war Prof. Dr. Dr. h.c. mult. Gerhard Ertl, Nobelpreisträger Chemie 2007.
Struktur des neuen Sonderforschungsbereiches
Der Sfb gliedert sich in zwei Projektbereiche: (A) Theoretische Methoden und (B) Anwendungskonzepte. Dabei beschäftigt sich der Bereich A mit grundlegenden, theoretischen Untersuchungen selbstorganisierender nichtlinearer Systeme. Durch seine interdisziplinäre Zusammensetzung bündelt er Expertise aus den Forschungsgebieten Theoretische Physik, Mathematik und Numerik sowie Neuroinformatik. Ziel ist ein fundamentales Verständnis erfolgreicher Kontrolle von selbstorganisierenden Prozessen.

Projektbereich B konzentriert sich auf die Anwendung der in Bereich A entwickelten Kontrollprinzipien auf beispielhaft ausgewählte innovative Modellsysteme mit einer großen Bandbreite unterschiedlicher Zeit- und Raumskalen. Die zu untersuchenden Modellsysteme stammen aus der Physik, Chemie und Biologie.

Die Mehrheit der 14 Teilprojekte ist in der Fakultät II Mathematik und Naturwissenschaften der TU Berlin angesiedelt. Dabei sind mit sieben Teilprojekten alle sechs Fachgebiete des Instituts für Theoretische Physik beteiligt. Ergänzt wird das Forschungsfeld durch drei Arbeitsgruppen des Instituts für Mathematik und eine Arbeitsgruppe des Instituts für Software-technik und Theoretische Informatik der Fakultät IV Elektrotechnik und Informatik der TU Berlin sowie je eine Arbeitsgruppe der Freien Universität Berlin, der Humboldt-Universität zu Berlin, des Fritz-Haber-Instituts der Max-Planck-Gesellschaft, der Physikalisch-Technischen Bundesanstalt und des Weierstraß-Instituts für Angewandte Analysis und Stochastik.

Förderung des wissenschaftlichen Nachwuchses
Ein besonderes Anliegen des Sfb ist die Förderung des wissenschaftlichen Nachwuchses sowie spezielle Maßnahmen zur Gleichstelllung von Wissenschaftlerinnen und Wissenschaftlern und zur Vereinbarkeit von Wissenschaft und Familie. Dazu plant der Sfb Fördermaßnahmen auf allen Stufen von Bachelor- und Master-Studierenden über Doktorandinnen und Doktoranden bis zum Postdoktorandenstadium. Durch Mentorenprogramme soll versucht werden, Frauen für die Naturwissenschaften aktiv zu gewinnen und zu fördern. In internationale Kooperationen mit führenden Forschergruppen in aller Welt sollen die jungen Wissenschaftlerinnen und Wissenschaftler schon frühzeitig durch Austausch- und Kooperationsprogramme eingebunden werden. Eine enge Zusammenarbeit und die Nutzung von Synergieeffekten ist auch mit dem kürzlich an der TU Berlin eingerichteten Graduiertenkolleg 1558 „Nonequilibrium Collective Dynamics in Condensed Matter and Biological Systems” geplant (Start: 1. Oktober 2009, Sprecher: Prof. Dr. Holger Stark, Institut für Theoretische Physik der TU Berlin), dessen strukturiertes Doktorandenprogramm auch die Doktorandinnen und Doktoranden des Sfb 910 nutzen können.
Beteiligte Institutionen des neuen Sonderforschungsbereiches
• Technische Universität Berlin (Sprecherhochschule)
• Freie Universität Berlin
• Humboldt-Universität zu Berlin
• Fritz-Haber-Institut der Max-Planck-Gesellschaft
• Physikalisch-Technische Bundesanstalt
• Weierstraß-Institut für Angewandte Analysis und Stochastik
Weitere Informationen erteilt Ihnen gern: Prof. Dr. Eckehard Schöll, PhD,
Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36,10623 Berlin, Tel.: 030/314-2 35 00, Fax: -21130, E-Mail: schoell@physik.tu-berlin.de
Die Medieninformation zum Download:
www.pressestelle.tu-berlin.de/medieninformationen/
„EIN-Blick für Journalisten“ – Serviceangebot der TU Berlin für Medienvertreter:
Forschungsgeschichten, Expertendienst, Ideenpool, Fotogalerien unter:
http://www.pressestelle.tu-berlin.de/?id=4608

Stefanie Terp | idw
Weitere Informationen:
http://www.tu-berlin.de/?id=93708
http://www.tu-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops