Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Quantenzustände für bessere Quantenspeicher

23.11.2016

Wie kann man Quanteninformation möglichst lange abspeichern? Einem Team der TU Wien gelingt bei der Entwicklung von Quantenspeichern ein wichtiger Schritt nach vorne.

Die Speicher, die wir heute für unsere Computer verwenden, unterscheiden nur zwischen 0 und 1. Die Quantenphysik erlaubt aber auch beliebige Überlagerungen von Zuständen. Auf diesem Grundsatz, dem „Superpositionsprinzip“, beruhen Ideen für neue Quanten-Technologien.


Ein künstlicher Diamant unter dem optischen Mikroskop. Da der Diamant viele Stickstoff Fehlstellen enthält, fluoresziert er in roter Farbe.

TU Wien


Messapparatur zur Herstellung von langlebigen Quantenzuständen.

TU Wien

Ein zentrales Problem daran ist allerdings, dass solche quantenphysikalischen Überlagerungen sehr kurzlebig sind. Nur für eine winzige Zeitspanne kann man die Information aus einem Quantenspeicher zuverlässig auslesen, danach ist sie unwiederbringlich verloren.

An der TU Wien ist nun in der Entwicklung neuer Quantenspeicher-Konzepte ein wichtiger Schritt nach vorne gelungen. In Zusammenarbeit mit dem japanischen Telekommunikationsriesen NTT arbeiten die Wiener Forscher unter der Leitung von Johannes Majer an Quantenspeichern aus Stickstoffatomen und Mikrowellen.

Durch ihre unterschiedliche Umgebung weisen die Stickstoffatome alle leicht unterschiedliche Eigenschaften auf, wodurch der Quantenzustand relativ schnell „zerläuft“. Durch gezielte Manipulation eines kleinen Teils der Atome kann man diese jedoch in einen neuen Quantenzustand bringen, der eine mehr als zehnfache Lebensdauer hat. Diese Ergebnisse wurden nun im Fachjournal „Nature Photonics“ veröffentlicht.

Stickstoff im Diamant

„Wir verwenden synthetische Diamanten, in denen einzelne Stickstoffatome eingebaut sind.“, erklärt Projektleiter Johannes Majer vom Atominstitut der TU Wien. „Den Quantenzustand dieser Stickstoffatome koppeln wir mit Mikrowellen, das ergibt ein Quantensystem, in dem wir Information speichern und später wieder auslesen können.“

Die Speicherdauer in diesen Systemen ist allerdings durch die inhomogene Verbreiterung der Mikrowellenübergänge in den Stickstoffatomen im Diamantkristall beschränkt. Nach etwa einer halben Mikrosekunde kann der Quantenzustand nicht mehr zuverlässig ausgelesen werden, das eigentliche Signal geht verloren. Das Team um Johannes Majer hatte nun die Idee des „spektralen Lochbrennens“, einem Trick, der es im optischen Bereich ermöglicht Daten in inhomogen verbreiterten Medien zu speichern, für supraleitende Quantenschaltkreise und Spin-Quantenspeicher zu adaptieren.

Dmitry Krimer, Beneditk Hartl und Stefan Rotter (Institut für Theoretische Physik der TU Wien) konnten in einer Theoriearbeit zeigen, dass solche Zustände, die vom störenden Rauschen weitgehend entkoppelt sind auch für diese Systeme existieren. „Der Trick ist das Quantensystem durch gezielte Manipulation in diese langlebigen Zustände zu bringen, damit die Information auch dort abgespeichert werden kann.“, erklärt Dmitry Krimer.

Bestimmte Energien ausschließen

„Durch die lokalen Eigenschaften des nicht ganz perfekten Diamantkristalls haben die Übergänge in den Stickstoffatomen leicht unterschiedliche Energien“, erklärt Stefan Putz, Erstautor der Studie, der mittlerweile von der TU Wien an die Princeton University gewechselt ist.

„Wenn man mit Hilfe von Mikrowellen gezielt Stickstoffatome bei einer bestimmten Energien „ausbleicht“ entsteht ein „Spektrales Loch“. Die übrigen Stickstoffatome können dann in einen neuen Quantenzustand, einen so genannten Dunkelzustand, im Zentrum dieses „Spektralen Lochs“ gebracht werden. Dieser ist viel stabiler und eröffnet völlig neue Möglichkeiten.“

„Unsere Arbeit ist ein Machbarkeitsbeweis für ein neues Konzept mit dem wir das Fundament für die weitere Erkundung innovativer Operationsprotokolle von Quantenspeichern legen wollen“, sagt Stefan Putz.

Mit der neuen Methode konnte die Lebensdauer von Quantenzuständen des gekoppelten Systems aus Mikrowellen und Stickstoffatomen um mehr als das zehnfache auf etwa fünf Mikrosekunden gesteigert werden. Das ist in den Zeitmaßstäben unseres Alltags noch immer nicht viel, reicht allerdings für wichtige quantentechnologische Anwendungen bereits aus.

„Der Vorteil unseres Systems ist, dass man Quanteninformation innerhalb von Nanosekunden einschreiben und auslesen kann“, erklärt Johannes Majer. „In den Mikrosekunden, die es stabil gehalten werden kann, ist daher eine große Zahl von Arbeitsschritten möglich.“

Originalpublikationen: Spectral hole burning and its application in microwave photonics
Nature Photonics: PUBLISHED ONLINE: 21 NOVEMBER 2016 | DOI: 10.1038/NPHOTON.2016.225
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2016.225.html

Hybrid quantum systems with collectively coupled spin states: suppression of decoherence through spectral hole burning, Phys. Rev. Lett. 115, 033601 (2015) | DOI: 10.1103/PhysRevLett.115.033601
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.033601

Weitere Informationen:

http://www.tuwien.ac.at/en/news/news_detail/article/124550/

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie