Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanorotoren haben den Dreh raus

19.08.2015

Einem internationalen Team, bestehend aus ForscherInnen der Universität Wien, der Tel Aviv University und der Universität Duisburg-Essen, ist es erstmals gelungen, Nanostäbchen zu präparieren, mittels Laserlicht ins Vakuum zu heben, ihre Bewegung mit hoher Zeitauflösung zu verfolgen, zu beeinflussen und zu verstehen. Die im Fachjournal Nano Letters publizierten Ergebnisse öffnen das Fenster zu einer neuen Klasse von Nanopartikeln an der Grenze zur Alltagswelt.

Wieso können wir quantenmechanische Phänomene bislang nur in kleinen Systemen beobachten und gibt es eine fundamentale Massengrenze?


Nanorotoren werden durch eine Vakuumkammer katapultiert und durch Laserlicht zwischen zwei Spiegeln manipuliert .

Copyright: Gruppe Markus Arndt, Universität Wien; Bild: Stefan Kuhn

Die Beantwortung dieser Frage steht im Mittelpunkt der Forschungsarbeiten des ForscherInnenteams rund um Markus Arndt, Professor für Quantenphysik an der Universität Wien, und findet sich ebenso im Programm des EU Konsortiums NANOQUESTFIT, das an der Universität Wien koordiniert wird.

Bei der Suche, Quanteneffekte mit immer größeren Objekten zu demonstrieren, ist es wichtig, deren Eigenschaften kontrollieren zu können. Das europäische Konsortium konnte nun erstmals Silizium-Nanostäbchen so präparieren, dass sie mittels Laserlicht im Vakuum kontrolliert zum Fliegen gebracht werden können.

"Obwohl diese Teilchen zehn Millionen mal kleiner sind und sich über eine Millionen mal schneller drehen als die Rotorblätter eines Hubschraubers, können wir ihre Bewegung nicht nur sichtbar machen, sondern durch intensives Laserlicht sogar manipulieren", so Stefan Kuhn, Erstautor der Studie.

Der erfreuliche Nebeneffekt: Aufgrund der Form der Nano-Rotoren werden bis zu dreimal stärkere Kräfte beobachtet, als man für runde Teilchen gleicher Masse erwarten würde. Das ist ein wichtiger Faktor im Vergleich zu allen bislang untersuchten Systemen.

Ein Wald aus Silizium-Stäbchen

Die Nanoteilchen werden an der Universität von Tel Aviv in Israel unter der Leitung von Fernando Patolsky hergestellt. Dabei wird aus der Oberfläche eines Silizium-Plättchens ein Wald aus stehenden Stäbchen geätzt, deren Dicke rund 200 Mal dünner ist als die eines Haares.

Ein spezielles Verfahren erzeugt an den Füßen der Stäbchen Sollbruchstellen, an denen sie später gezielt abgebrochen werden können – dies sieht in etwa so aus, wie von Bibern angenagte Bäume kurz vor dem Umfallen. Tatsächlich abgebrochen werden die Stäbchen allerding erst im Wiener Quantennanolabor – durch intensive Laserlichtimpulse auf die den Stäbchen abgewandte Rückseite des Plättchens. Die abgelösten Teilchen fliegen in der Vakuumapparatur durch einen optischen Resonator, der infrarotes Laserlicht auf eine Leistung von einigen hundert Watt verstärkt.

Ein neuer Twist für die Optomechanik

Wenn die frei fliegenden und rotierenden Teilchen mit dem Laserlicht innerhalb des Resonators wechselwirken, passiert Folgendes: Zum einen streuen die Nanoteilchen einen Teil des Lichts abhängig von ihrer Position und Orientierung. Dadurch lässt sich die Bewegung jedes einzelnen Teilchens in Echtzeit mit der Auflösung einer Millionstel Sekunde verfolgen.

Zum anderen übt das Licht Kräfte auf die Bewegung der Teilchen aus, wodurch deren Geschwindigkeit und Drehung beeinflusst werden können. In Zukunft möchte das Team die optischen Kräfte nutzen, um die Drehbewegung der Nano-Rotoren zu kühlen. "Die Rotation der Teilchen gibt uns neue Freiheitsgrade, um die Teilchen zu kontrollieren", so Kuhn. "Zusätzlich könnte man unser System als Sensor zur Messung sehr kleiner Kräfte, als Mini-Kreisel oder zur Untersuchung der Thermodynamik an einzelnen Teilchen verwenden."

Publikation in Nano Letters:
Cavity-Assisted Manipulation of Freely Rotating Silicon Nanorods in High Vacuum: Stefan Kuhn, Peter Asenbaum, Alon Kosloff, Michele Sclafani, Benjamin A. Stickler, Stefan Nimmrichter, Klaus Hornberger, Ori Cheshnovsky, Fernando Patolsky, and Markus Arndt. Nano Letters, 15(8), 5604–5608 (2015) . DOI:10.1021/acs.nanolett.5b02302

Wissenschaftliche Kontakte
Univ.-Prof. Dr. Markus Arndt
stv. Leiter der Forschungsplattform Quantum Phenomena and Nanoscale Biological Systems
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 Wien, Boltzmanngasse 5
M: +43-664-60277-51210
markus.arndt@univie.ac.at

Stefan Kuhn, MSc
Quantum Nanophysics & Molecular Quantum Optics
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
M +43 664 5312409
stefan.kuhn@univie.ac.at
http://www.quantumnano.at/

Stefan Kuhn befindet sich derzeit in Kanada, ist aber per Telefon und per Mail erreichbar.

Rückfragehinweis
Stephan Brodicky
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 41
stephan.brodicky@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://univie.ac.at

1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum mit einem vielfältigen Jahresprogramm – unterstützt von zahlreichen Sponsoren und Kooperationspartnern. Die Universität Wien bedankt sich dafür bei ihren KooperationspartnerInnen, insbesondere bei: Österreichische Post AG, Raiffeisen NÖ-Wien, Bundesministerium für Wissenschaft, Forschung und Wirtschaft, Stadt Wien, Industriellenvereinigung, Erste Bank, Vienna Insurance Group, voestalpine, ÖBB Holding AG, Bundesimmobiliengesellschaft, Mondi. Medienpartner sind: ORF, Die Presse, Der Standard.

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten