Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopartikel präzise steuern und digital nutzen

18.08.2015

Erstmals lassen sich Kolloide – winzige, in Lösungen vorliegende Partikel – hochpräzise anordnen und vor allem in ihren Bewegungen steuern. Dank einem neuen, von Wissenschaftlern der Universität Zürich erforschten Verfahren könnten diese kolloidalen Nanopartikel Eingang in die digitale Technologie finden. Denn sie brauchen wenig Energie, sie sind schnell und bieten enorme Speicherkapazitäten – ideale Eigenschaften für neuartige Datenträger oder hochauflösende Bildschirme.

Kolloide sind kleinste Partikel, die in einer Flüssigkeit fein verteilt sind. Bisher finden wir sie vor allem in Getränken, Kosmetika und Farben. Mit blossem Auge können wir sie bei einer Grössenordnung von zehn bis circa hundert Nanometern nicht erkennen. Aufgrund der «Brownschen Bewegung» bewegen sich diese Nanopartikel permanent. Sie unterliegen dabei durch ihre elektrische Ladung den Kräften von Abstossung und Anziehung.


In einem einzigen Nanostab sind EIN- und AUS-Zustände eines Datenspeichers (entspricht binären 1 und 0) möglich. Das externe elektrische Signal (rote Linie) schreibt einen neuen Zustand auf das Pi

UZH

Madhavi Krishnan, Professorin für physikalische Chemie an der Universität Zürich, ist es bereits in Arbeiten vor fünf Jahren gelungen, räumliche Kontrolle über Materie in kleinstem Massstab zu erlangen. In einer neuen Studie zeigt sie nun gemeinsam mit ihren Laborkollegen, dass es möglich ist, diese Nanopartikel nicht nur räumlich anzuordnen, sondern auch ohne Berührung in einer Flüssigkeit kontrolliert zu bewegen.


Steuerung mit elektrischen und optischen Signalen

Die Forscher haben ein Verfahren entwickelt, mit dem sich Nanostruktur erzeugen und flexibel verändern lässt: Sie waren in der Lage, die Kleinstpartikel hochpräzise zu neuen Gebilden anzuordnen und deren Kräfte bewusst zu steuern.

«Die Manipulation wird durch die Wechselwirkungen mit elektrischen und optischen Feldern möglich», erklärt Madhavi Krishnan. Ausserdem braucht es für die neuartige Anwendung der intermolekularen Wechselwirkung erstmals keine ultrakalten Temperaturen. Die neue Technologie funktioniert bestens bei Raumtemperatur. Sie ist überdies extrem schnell und äusserst reibungsarm.


Kleiner, schneller und mit mehr Speicher

Die Methode zur Anordnung und Bewegung der Kolloide erlaubt es, gänzlich neue Materialien zu entwickeln. «Gerade für digitale Technologien weisen die Nanopartikel ideale Eigenschaften auf, da sich in jedem einzelnen Partikel Daten speichern und abrufen lassen», erklärt Madhavi Krishnan.

Mit der gezielten Steuerung einzelner Nanopartikel eröffnen sich neue Möglichkeiten, diese einzusetzen – beispielsweise als zukünftige Datenspeicher oder bei neuartigen Bildschirmen mit bisher schwer zu erreichender Auflösung. «Es lassen sich Nano-Bildschirme herstellen in der Art des Kindle-Lesegeräts mit einer tausendmal kleineren Pixelgrösse und viel schnellerer Reaktionszeit», so die Wissenschaftlerin.

Literatur

Christopher J. Myers, Michele Celebrano and Madhavi Krishnan. Information storage and retrieval in a single levitating colloidal particle. Nature Nanotechnology, August 17, 2015. doi: 10.1038/nnano.2015.173

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles.html

Evelyne Brönnimann | Universität Zürich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie