Nano-Messbecher erlauben Einblick in die Kondensation von Atomen

Untersuchung der Kondensation von Xenon: Dargestellt sind in Rastertunnelmikroskopie drei verschiedene Quantentöpfe, die ein, zwei und zwölf Xenon-Atome enthalten.

Das Team um Prof. Thomas Jung vom Swiss Nanoscience Institute, Departement Physik der Universität Basel und Paul-Scherrer-Institut hat eine Methode entwickelt, mit der sich die Kondensation von einzelnen Atomen erstmals Schritt für Schritt abbilden lässt. Die Forschenden liessen Atome des Edelgases Xenon in sogenannten Quantentöpfen kondensieren und untersuchten die entstehenden Ansammlungen darauf mithilfe der Rastertunnelmikroskopie.

Quantentöpfe als Messbecher

Die verwendeten Quantentöpfe entstehen jeweils durch Selbstorganisation von spezifisch «programmierten» Molekülen zu einem porösen Netzwerk auf einer Substratoberfläche. Sie dienen als Messbecher mit genau definierter Grösse, Form und atomarer Struktur des Bodens und der Wände. In den Quantentöpfen ist die Bewegungsfreiheit der Atome eingeschränkt, und ihre Anordnung lässt sich je nach Besetzung genau untersuchen und darstellen.

So konnten die Wissenschaftler zeigen, dass sich die Xenon-Atome immer nach einem bestimmten Prinzip anordnen. Beispielsweise bilden sich gewisse Einheiten aus vier Atomen erst, wenn sich mindestens sieben Atome im Quantentopf befinden. Befinden sich zwölf Atome in dem Quantentopf, entstehen drei sehr stabile Vierereinheiten.

Rückschlüsse auf die Natur von Bindungen

Die an den Nanokondensaten zum ersten Mal erfassten Bilder und Strukturen erlauben wichtige Rückschlüsse auf die Natur der physikalischen Bindungen, welche die Xenon-Atome eingehen. «Wir können dieses System aber nicht nur für Edelgase einsetzen», kommentiert die Erstautorin der Publikation, Sylwia Nowakowska. «Auch andere Atome und ihre Bindungen kann man damit untersuchen.» Da die Methode genau abbildet, wie sich die Atome aneinander binden und wie stabil die verschiedenen Zustände sind, lassen sich mit der neu entwickelten Methode auch theoretische Berechnungen über Bindungen überprüfen.

Die Ergebnisse der Studie basieren auf einer Zusammenarbeit von Forschenden aus der Schweiz, Brasilien, Schweden, Deutschland und den Niederlanden und wurden in der aktuellen Ausgabe der Fachzeitschrift «Nature Communications» veröffentlicht.

Originalbeitrag
Sylwia Nowakowska, Aneliia Wäckerlin, Shigeki Kawai, Toni Ivas, Jan Nowakowski, Shadi Fatayer, Christian Wäckerlin, Thomas Nijs, Ernst Meyer, Jonas Björk, Meike Stöhr, Lutz H. Gade & Thomas A. Jung
Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes
Nature Communications 2015, DOI: 10.1038/ncomms7071

Weitere Auskünfte
Prof. Thomas Jung, Swiss Nanoscience Institute (SNI), Universität Basel, Mobile: +41 79 222 45 36, E-Mail : thomas.jung@psi.ch

Media Contact

Olivia Poisson Universität Basel

Weitere Informationen:

http://www.unibas.ch

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neuartiges Material für nachhaltiges Bauen

Innovativer Werkstoff für eine energieeffiziente Architektur: Forschende des Karlsruher Instituts für Technologie (KIT) stellen in der aktuellen Ausgabe der Fachzeitschrift Nature Communications ein polymerbasiertes Material mit besonderen Eigenschaften vor. Das…

Neues Antibiotikum gegen Erreger der Flussblindheit und Lymphatischen Filariose

Prof. Achim Hoerauf, Direktor des Instituts für Medizinische Mikrobiologie, Immunologie und Parasitologie des Universitätsklinikums Bonn (UKB), und seinem Team ist es in Kollaboration mit der Abteilung Pharmazeutische Technologie und Biopharmazie…

Evolutionäre Genomik: Folgen biodiverser Fortpflanzungssysteme

Die Deutsche Forschungsgemeinschaft (DFG) fördert die Einrichtung eines neuen Graduiertenkollegs (GRK) in der Biologie an der Universität Göttingen. Das GRK mit dem Titel „Evolutionary Genomics: Consequences of Biodiverse Reproductive Systems…

Partner & Förderer